高二數學哪些個知識點
學習方法上一旦養成習慣,就會感到不預習就無法聽好課,不復習就不能做好作業。這種良好的學習習慣會大大提高學習效率,提高學習質量。而這種良好的學習習慣是長期按照學習計劃進行學習的結果。下面是小編給大家帶來的高二數學知識點,希望大家能夠喜歡!
高二數學知識點1
有界性
設函數f(x)在區間X上有定義,如果存在M>0,對于一切屬于區間X上的x,恒有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界。
單調性
設函數f(x)的定義域為D,區間I包含于D。如果對于區間上任意兩點x1及x2,當x1f(x2),則稱函數f(x)在區間I上是單調遞減的。單調遞增和單調遞減的函數統稱為單調函數。
奇偶性
設為一個實變量實值函數,若有f(-x)=-f(x),則f(x)為奇函數。
幾何上,一個奇函數關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變。
奇函數的例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變量實值函數,若有f(x)=f(-x),則f(x)為偶函數。
幾何上,一個偶函數關于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數的例子有|x|、x2、cos(x)和cosh(x)。
偶函數不可能是個雙射映射。
連續性
在數學中,連續是函數的一種屬性。直觀上來說,連續的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數。如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續的函數(或者說具有不連續性)。
高二數學知識點2
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發生的事件,叫做相對于條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發生的可能性大小能為我們決策提供關鍵性依據.
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA
nA為事件A出現的頻數,稱事件A出現的比例fn(A)=為事件A出現的頻率.
3.對于給定的隨機事件A,由于事件A發生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二數學知識點3
1、導數的定義:在點處的導數記作.
2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。
