<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數學 > 高一數學最新知識點歸納大全

        高一數學最新知識點歸納大全

        時間: 楚琪0 分享

        高一數學最新知識點歸納大全2022

        總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以使我們更有效率,讓我們好好寫一份總結吧。我們該怎么去寫總結呢?下面是小編給大家帶來的高一數學最新知識點歸納大全,以供大家參考!

        高一數學最新知識點歸納大全

        歸納1

        1、“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2、“相等”關系(5≥5,且5≤5,則5=5)

        實例:設A={x|x2—1=0}B={—1,1}“元素相同”

        結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

        ①任何一個集合是它本身的子集。AíA

        ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果AíB,BíC,那么AíC

        ④如果AíB同時BíA那么A=B

        3、不含任何元素的集合叫做空集,記為Φ

        規定:空集是任何集合的子集,空集是任何非空集合的真子集。

        歸納2

        形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

        自變量x的取值范圍是不等于0的一切實數。

        反比例函數圖像性質:

        反比例函數的圖像為雙曲線。

        由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

        另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        上面給出了k分別為正和負(2和—2)時的函數圖像。

        當K>0時,反比例函數圖像經過一,三象限,是減函數

        當K<0時,反比例函數圖像經過二,四象限,是增函數

        反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

        2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

        歸納3

        方程的根與函數的零點

        1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

        2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。

        3、函數零點的求法:

        (1)(代數法)求方程的實數根;

        (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點。

        4、二次函數的零點:

        (1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

        (2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

        (3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

        歸納3

        形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

        自變量x的取值范圍是不等于0的一切實數。

        反比例函數圖像性質:

        反比例函數的圖像為雙曲線。

        由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

        另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

        當K>0時,反比例函數圖像經過一,三象限,是減函數

        當K<0時,反比例函數圖像經過二,四象限,是增函數

        反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

        2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

        歸納4

        冪函數的性質:

        對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

        排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

        排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數;

        排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

        總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;

        如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

        在x大于0時,函數的值域總是大于0的實數。

        在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

        而只有a為正數,0才進入函數的值域。

        由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、

        可以看到:

        (1)所有的圖形都通過(1,1)這點。

        (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

        (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

        (4)當a小于0時,a越小,圖形傾斜程度越大。

        (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

        (6)顯然冪函數無界。

        解題方法:換元法

        解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

        換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

        它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

        高一數學知識點總結

        數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。小編準備了高一數學必修1期末考知識點,希望你喜歡。

        一、集合有關概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

        2、集合的中元素的三個特性:

        1.元素的確定性; 2.元素的互異性; 3.元素的無序性

        說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.

        (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

        (4)集合元素的三個特性使集合本身具有了確定性和整體性.

        3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法.

        注意啊:常用數集及其記法:

        非負整數集(即自然數集)記作:N

        正整數集 N_或N+ 整數集Z 有理數集Q 實數集R

        關于屬于的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

        列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.

        ①語言描述法:例:{不是直角三角形的三角形}

        ②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

        4、集合的分類:

        1.有限集 含有有限個元素的集合

        2.無限集 含有無限個元素的集合

        3.空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關系

        1.包含關系子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.相等關系(55,且55,則5=5)

        實例:設 A={x|x2-1=0} B={-1,1} 元素相同

        結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

        ① 任何一個集合是它本身的子集.AA

        ②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

        ③如果 AB, BC ,那么 AC

        ④ 如果AB 同時 BA 那么A=B

        3. 不含任何元素的集合叫做空集,記為

        規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

        三、集合的運算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作AB(讀作A交B),即AB={x|xA,且xB}.

        2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

        3、交集與并集的性質:AA = A, A=, AB = BA,AA = A,

        A= A ,AB = BA.

        4、全集與補集

        (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.

        (3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

        高一數學知識點總結人教版

        函數的奇偶性(整體性質)

        (1)偶函數

        一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

        (2).奇函數

        一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

        (3)具有奇偶性的函數的圖象的特征

        偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

        利用定義判斷函數奇偶性的步驟:

        ○1首先確定函數的定義域,并判斷其是否關于原點對稱;

        ○2確定f(-x)與f(x)的關系;

        ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

        (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數的圖象判定.

        9、函數的解析表達式

        (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

        (2)求函數的解析式的主要方法有:

        1)湊配法

        2)待定系數法

        3)換元法

        4)消參法

        10.函數(小)值(定義見課本p36頁)

        ○1利用二次函數的性質(配方法)求函數的(小)值

        ○2利用圖象求函數的(小)值

        ○3利用函數單調性的判斷函數的(小)值:

        如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

        如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

        高一數學最新知識點歸納大全相關文章:

        高一數學知識點全面總結

        高一數學知識點匯總大全

        高一數學知識點復習歸納

        高一數學知識點歸納總結

        高一數學第一冊必掌握的知識點歸納

        高一數學知識點大全

        高一數學知識點總結歸納

        高一數學知識點小歸納

        高一數學必會必備知識點總結歸納

        高一數學有用必考知識點歸納

        1332406 主站蜘蛛池模板: 日韩高清不卡一区二区三区 | 视频免费完整版在线播放| 亚洲国产成人综合精品| 无码精品一区二区久久久| 亚洲综合无码一区二区| 久久夜色撩人精品国产av| 国产精品中文字幕久久| 国产亚洲精品视频一二区| 日韩精品一区二区三区激情视频 | 国产成人精品2021欧美日韩| 一色桃子中出欲求不满人妻| 中文字幕av国产精品| 老熟妇乱子交视频一区| 一本色道婷婷久久欧美| 狠狠色丁香婷婷综合| 亚洲一区二区三区人妻天堂| 性做久久久久久久久| 午夜福利国产精品视频| 好大好深好猛好爽视频免费| AV无码免费不卡在线观看| 亚洲大尺度视频在线播放| 色噜噜噜亚洲男人的天堂| 在线观看美女网站大全免费| 日韩大片看一区二区三区| jizz视频在线观看| 伊人久久精品无码麻豆一区| 久久综合激情网| 国产丝袜丝视频在线观看| 一区二区三区鲁丝不卡| 亚洲中文字幕一区二区| 中文国产成人精品久久不卡| 国产精品va在线观看h| 激情综合网激情综合| 长腿校花无力呻吟娇喘的视频| 国产精品国产精品偷麻豆| 丁香婷婷色综合激情五月| 福利一区二区在线观看| 在线看片免费人成视久网| 国产办公室秘书无码精品99| 国产精品鲁鲁鲁| 国产成人无码一区二区三区|