六年級數學觀察物體知識點
小學數學是通過教材,教小朋友們關于數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。下面小編給大家分享一些六年級數學觀察物體知識,希望能夠幫助大家,歡迎閱讀!

六年級觀察物體知識
一、搭積木比賽
1.能正確辨認從不同方向(正面、側面、上面)觀察到的立體圖形的形狀,并畫出平面圖。
2.能根據把從正面、側面、上面觀察的平面圖形還原成立體圖形,進一步體會從三個方向觀察就可以確定立體圖形的形狀;能根據給定的兩個方向觀察到的平面圖形的形狀,確定搭成這個立體圖形所需要的立方體的數量。
二、觀察范圍
1、經歷分別將眼睛、視線與觀察的范圍抽象為點、線、區域的過程,感受觀察范圍隨觀察點、觀察角度的變化而改變。
2、能正確認識視線都是直線這個現象。能利用所學的知識解釋生活中的一些現象。
路燈下物體的影長:同樣高的桿子離路燈越近,它的影子就越 短。
三、天安門廣場
1、從不同的位置,觀察物體的形狀和相對位置。
2、同一物體,從不同位置觀察物體,看到的的形狀也有所不同。觀察時先確定景物中主要物體的相對位置關系,再進行合理的想象和推理。作出正確的判斷。
小學數學思想方法有哪些?
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,并以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最后找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善于引導學生比較題中已知和未知數量變化前后的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的'濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標準。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標準就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決于分類標準的正確、合理性,數學知識的分類有助于學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時采用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,借助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常借助線段圖的直觀幫助分析數量關系。
10、統計思想方法
小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
什么是小學數學思想方法
所謂的數學思想,是指人們對數學理論與內容的本質認識,是從某些具體數學認識過程中提煉出的一些觀點,它揭示了數學發展中普遍的規律,它直接支配著數學的實踐活動,這是對數學規律的理性認識。
所謂的數學方法,就是解決數學問題的方法,即解決數學具體問題時所采用的方式、途徑和手段,也可以說是解決數學問題的策略。
數學思想是宏觀的,它更具有普遍的指導意義。而數學方法是微觀的,它是解決數學問題的直接具體的手段。一般來說,前者給出了解決問題的方向,后者給出了解決問題的策略。但由于小學數學內容比較簡單,知識最為基礎,所以隱藏的思想和方法很難截然分開,更多的反映在聯系方面,其本質往往是一致的。如常用的分類思想和分類方法,集合思想和交集方法,在本質上都是相通的,所以小學數學通常把數學思想和方法看成一個整體概念,即小學數學思想方法。
六年級數學觀察物體知識點相關文章:
