<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦>學習方法>初中學習方法>初二學習方法>八年級數學>

        初二數學上冊書知識點總結

        時間: 妙純901 分享

          學習八年級數學知識點的時間不多。學習會使你獲得許多你成長所必需的“能源”,以下是學習啦小編為大家整理的初二數學上冊書知識點總結,希望你們喜歡。

          初二數學上冊書知識點總結1-40

          1 全等三角形的對應邊、對應角相等 ¬

          2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬

          3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬

          4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬

          5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬

          6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬

          7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬

          8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬

          9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬

          10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬

          21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 ¬

          22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬

          23 推論3 等邊三角形的各角都相等,并且每一個角都等于60° ¬

          24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) ¬

          25 推論1 三個角都相等的三角形是等邊三角形 ¬

          26 推論 2 有一個角等于60°的等腰三角形是等邊三角形 ¬

          27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 ¬

          28 直角三角形斜邊上的中線等于斜邊上的一半 ¬

          29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬

          30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬

          31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬

          32 定理1 關于某條直線對稱的兩個圖形是全等形 ¬

          33 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 ¬

          34定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 ¬

          35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱 ¬

          36勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 ¬

          37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形 ¬

          38定理 四邊形的內角和等于360° ¬

          39四邊形的外角和等于360° ¬

          40多邊形內角和定理 n邊形的內角的和等于(n-2)×180° ¬

          初二數學上冊書知識點總結41-80

          41推論 任意多邊的外角和等于360° ¬

          42平行四邊形性質定理1 平行四邊形的對角相等 ¬

          43平行四邊形性質定理2 平行四邊形的對邊相等 ¬

          44推論 夾在兩條平行線間的平行線段相等 ¬

          45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬

          46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬

          47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬

          48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬

          49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬

          50矩形性質定理1 矩形的四個角都是直角 ¬

          51矩形性質定理2 矩形的對角線相等 ¬

          52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬

          53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬

          54菱形性質定理1 菱形的四條邊都相等 ¬

          55菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 ¬

          56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬

          57菱形判定定理1 四邊都相等的四邊形是菱形 ¬

          58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬

          59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬

          60正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 ¬

          61定理1 關于中心對稱的兩個圖形是全等的 ¬

          62定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分 ¬

          63逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一 ¬

          點平分,那么這兩個圖形關于這一點對稱 ¬

          64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬

          65等腰梯形的兩條對角線相等 ¬

          66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬

          67對角線相等的梯形是等腰梯形 ¬

          68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬

          相等,那么在其他直線上截得的線段也相等 ¬

          69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬

          70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬

          三邊 ¬

          71 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 ¬

          的一半 ¬

          72 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 ¬

          一半 L=(a+b)÷2 S=L×h ¬

          73 (1)比例的基本性質 如果a:b=c:d,那么ad=bc ¬

          如果ad=bc,那么a:b=c:d ¬

          74 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬

          75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬

          (a+c+…+m)/(b+d+…+n)=a/b ¬

          76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬

          線段成比例 ¬

          77 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬

          78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 ¬

          79 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬

          80 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬

          初二數學上冊書知識點總結81-136

          81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬

          82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬

          83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬

          84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬

          85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ¬

          角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 ¬

          86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ¬

          分線的比都等于相似比 ¬

          87 性質定理2 相似三角形周長的比等于相似比 ¬

          88 性質定理3 相似三角形面積的比等于相似比的平方 ¬

          89 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 ¬

          于它的余角的正弦值 ¬

          90任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 ¬

          于它的余角的正切值 ¬

          91圓是定點的距離等于定長的點的集合 ¬

          92圓的內部可以看作是圓心的距離小于半徑的點的集合 ¬

          93圓的外部可以看作是圓心的距離大于半徑的點的集合 ¬

          94同圓或等圓的半徑相等 ¬

          95到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 ¬

          徑的圓 ¬

          96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ¬

          平分線 ¬

          97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ¬

          98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ¬

          離相等的一條直線 ¬

          99定理 不在同一直線上的三點確定一個圓. ¬

          100垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 ¬

          101推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ¬

          ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧 ¬

          ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 ¬

          102推論2 圓的兩條平行弦所夾的弧相等 ¬

          103圓是以圓心為對稱中心的中心對稱圖形 ¬

          104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ¬

          相等,所對的弦的弦心距相等 ¬

          105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ¬

          弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 ¬

          106定理 一條弧所對的圓周角等于它所對的圓心角的一半 ¬

          107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ¬

          108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ¬

          對的弦是直徑 ¬

          109推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 ¬

          110定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 ¬

          的內對角 ¬

          111①直線L和⊙O相交 d

          ②直線L和⊙O相切 d=r ¬

          ③直線L和⊙O相離 d>r ¬

          112切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線 ¬

          113切線的性質定理 圓的切線垂直于經過切點的半徑 ¬

          114推論1 經過圓心且垂直于切線的直線必經過切點 ¬

          115推論2 經過切點且垂直于切線的直線必經過圓心 ¬

          116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ¬

          圓心和這一點的連線平分兩條切線的夾角 ¬

          117圓的外切四邊形的兩組對邊的和相等 ¬

          118弦切角定理 弦切角等于它所夾的弧對的圓周角 ¬

          119推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 ¬

          120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ¬

          相等 ¬

          121推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 ¬

          兩條線段的比例中項 ¬

          122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ¬

          線與圓交點的兩條線段長的比例中項 ¬

          123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ¬

          124如果兩個圓相切,那么切點一定在連心線上 ¬

          125①兩圓外離 d>R+r ②兩圓外切 d=R+r ¬

          ③兩圓相交 R-rr) ¬

          ④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr) ¬

          126定理 相交兩圓的連心線垂直平分兩圓的公共弦 ¬

          127定理 把圓分成n(n≥3): ¬

          ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ¬

          ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 ¬

          128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 ¬

          129正n邊形的每個內角都等于(n-2)×180°/n ¬

          130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 ¬

          131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 ¬

          132正三角形面積√3a/4 a表示邊長 ¬

          133如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 ¬

          360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 ¬

          134弧長計算公式:L=n兀R/180 ¬

          135扇形面積公式:S扇形=n兀R^2/360=LR/2 ¬

          136內公切線長= d-(R-r) 外公切線長= d-(R+r)¬

          看了“初二數學上冊書知識點總結”的人還看了:

        1.八年級數學上冊知識點歸納

        2.初二數學上冊知識點總結1

        3.人教版八年級上冊數學知識點總結

        4.八年級上冊數學復習知識點

        5.新人教版八年級數學上冊知識點

        2822766 主站蜘蛛池模板: 午夜A理论片在线播放| 亚洲亚洲人成综合网络| 国产精品区视频中文字幕| 久久久久免费看成人影片| 国产午夜福利大片免费看| 中文字幕无线码中文字幕| 国产精品久久蜜臀av| 久久精品一本到99热免费| 久久天天躁狠狠躁夜夜av| 国产精品女同一区三区五区| 超碰自拍成人在线观看| 亚洲av专区一区| 亚洲综合色区中文字幕| 国产亚洲精品第一综合| 人妻少妇久久中文字幕| 久久天天躁狠狠躁夜夜婷| 肥臀浪妇太爽了快点再快点| 中国CHINA体内裑精亚洲日本| 欧美 喷水 xxxx| 999福利激情视频| 亚洲aⅴ天堂av天堂无码| 国产偷国产偷高清精品| 国产h视频免费观看| 亚洲欧洲日产国码久在线| 国产精品久久国产丁香花| 国产麻豆放荡av激情演绎| 熟女精品国产一区二区三区| 熟女一区二区中文字幕| 亚洲高潮喷水无码AV电影| 亚洲激情一区二区三区视频| 猫咪AV成人永久网站在线观看| 欧美13一14娇小xxxx| 日韩精品高清自在线| 久久婷婷人人澡人人爱91| 欧美三级不卡在线观线看高清| 中国农村真卖bbwbbw| 欧美videosdesexo吹潮| 久久亚洲综合精品成人网| 韩国三级网一区二区三区| 亚洲AV无码午夜嘿嘿嘿| 欧美日本国产va高清cabal|