<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

        高三數(shù)學(xué)函數(shù)例題及解析(2)

        時間: 文娟843 分享

          高中數(shù)學(xué)函數(shù)知識點總結(jié)

          一次函數(shù)

          一、定義與定義式:

          自變量x和因變量y有如下關(guān)系:

          y=kx+b

          則此時稱y是x的一次函數(shù)。

          特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

          即:y=kx (k為常數(shù),k≠0)

          二、一次函數(shù)的性質(zhì):

          1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

          即:y=kx+b (k為任意不為零的實數(shù) b取任何實數(shù))

          2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì):

          1.作法與圖形:通過如下3個步驟

          (1)列表;

          (2)描點;

          (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

          2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

          3.k,b與函數(shù)圖像所在象限:

          當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

          當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

          當(dāng)b>0時,直線必通過一、二象限;

          當(dāng)b=0時,直線通過原點

          當(dāng)b<0時,直線必通過三、四象限。

          特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

          四、確定一次函數(shù)的表達式:

          已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

          (1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。

          (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

          (3)解這個二元一次方程,得到k,b的值。

          (4)最后得到一次函數(shù)的表達式。

          五、一次函數(shù)在生活中的應(yīng)用:

          1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

          2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

          六、常用公式:(不全,希望有人補充)

          1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

          2.求與x軸平行線段的中點:|x1-x2|/2

          3.求與y軸平行線段的中點:|y1-y2|/2

          4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)

          二次函數(shù)

          I.定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關(guān)系:

          y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II.二次函數(shù)的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

          交點式:y=a(x-x?)(x-x ?) [僅限于與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,

          可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線

          x = -b/2a。

          對稱軸與拋物線唯一的交點為拋物線的頂點P。

          特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點P,坐標為

          P ( -b/2a ,(4ac-b^2)/4a )

          當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b^2-4ac=0時,P在x軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

          當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

          當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

          5.常數(shù)項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點個數(shù)

          Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

          Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

          Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

          V.二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

          當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

          即ax^2+bx+c=0

          此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。

          函數(shù)與x軸交點的橫坐標即為方程的根。

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

          解析式 頂點坐標 對 稱 軸

          y=ax^2 (0,0) x=0

          y=a(x-h)^2 (h,0) x=h

          y=a(x-h)^2+k (h,k) x=h

          y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a

          當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當(dāng)h<0時,則向左平行移動|h|個單位得到.

          當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

          當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時,y隨x的增大而減小;當(dāng)x ≥ -b/2a時,y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時,y隨x的增大而增大;當(dāng)x ≥ -b/2a時,y隨x的增大而減小.

          4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

          當(dāng)△=0.圖象與x軸只有一個交點;

          當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當(dāng)題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

          (3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

          7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

          反比例函數(shù)

          形如 y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

          如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

          當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

          知識點:

          1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

          2.對于雙曲線y=k/x ,若在分母上加減任意一個實數(shù) (即 y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

          對數(shù)函數(shù)

          對數(shù)函數(shù)的一般形式為 ,它實際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

          右圖給出對于不同大小a所表示的函數(shù)圖形:

          可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

          (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

          (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

          (3)函數(shù)總是通過(1,0)這點。

          (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

          (5)顯然對數(shù)函數(shù)無界。

          指數(shù)函數(shù)

          指數(shù)函數(shù)的一般形式為 ,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得

          如圖所示為a的不同大小影響函數(shù)圖形的情況。

          可以看到:

          (1) 指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

          (2) 指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

          (3) 函數(shù)圖形都是下凹的。

          (4) a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

          (5) 可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

          (6) 函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

          (7) 函數(shù)總是通過(0,1)這點。

          (8) 顯然指數(shù)函數(shù)無界。

          奇偶性

          注圖:(1)為奇函數(shù)(2)為偶函數(shù)

          1.定義

          一般地,對于函數(shù)f(x)

          (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

          (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

          (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

          (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

          說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言

          ②奇、偶函數(shù)的定義域一定關(guān)于原點對稱,如果一個函數(shù)的定義域不關(guān)于原點對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。

          (分析:判斷函數(shù)的奇偶性,首先是檢驗其定義域是否關(guān)于原點對稱,然后再嚴格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)

          ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

          2.奇偶函數(shù)圖像的特征:

          定理 奇函數(shù)的圖像關(guān)于原點成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。

          f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點對稱

          點(x,y)→(-x,-y)

          奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。

          偶函數(shù) 在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。

          3. 奇偶函數(shù)運算

          (1) . 兩個偶函數(shù)相加所得的和為偶函數(shù).

          (2) . 兩個奇函數(shù)相加所得的和為奇函數(shù).

          (3) . 一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).

          (4) . 兩個偶函數(shù)相乘所得的積為偶函數(shù).

          (5) . 兩個奇函數(shù)相乘所得的積為偶函數(shù).

          (6) . 一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù).

          定義域

          (高中函數(shù)定義)設(shè)A,B是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

          值域

          名稱定義

          函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合

          常用的求值域的方法

          (1)化歸法;(2)圖象法(數(shù)形結(jié)合),

          (3)函數(shù)單調(diào)性法,

          (4)配方法,(5)換元法,(6)反函數(shù)法(逆求法),(7)判別式法,(8)復(fù)合函數(shù)法,(9)三角代換法,(10)基本不等式法等

          關(guān)于函數(shù)值域誤區(qū)

          定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學(xué)中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。

          “范圍”與“值域”相同嗎?

          “范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實際上這是兩個不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。


        猜你喜歡:

        1.高三數(shù)學(xué)函數(shù)例題及解析

        2.高三數(shù)學(xué)函數(shù)例題及解析

        3.高三數(shù)學(xué)函數(shù)專題訓(xùn)練題及答案

        4.高中文科數(shù)學(xué)函數(shù)試題及答案

        5.高中數(shù)學(xué)函數(shù)圖象練習(xí)題及答案

        6.高三數(shù)學(xué)函數(shù)知識點梳理

        高三數(shù)學(xué)函數(shù)例題及解析(2)

        高中數(shù)學(xué)函數(shù)知識點總結(jié) 一次函數(shù) 一、定義與定義式: 自變量x和因變量y有如下關(guān)系: y=kx+b 則此時稱y是x的一次函數(shù)。 特別地,當(dāng)b=0時,y是x的正比例函
        推薦度:
        點擊下載文檔文檔為doc格式

        精選文章

        • 高三數(shù)學(xué)函數(shù)與導(dǎo)數(shù)復(fù)習(xí)
          高三數(shù)學(xué)函數(shù)與導(dǎo)數(shù)復(fù)習(xí)

          函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的重要知識點,高三數(shù)學(xué)函數(shù)與導(dǎo)數(shù)學(xué)習(xí)的如何呢?下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)函數(shù)與導(dǎo)數(shù)復(fù)習(xí)資料,希望對大家有所幫

        • 高三數(shù)學(xué)基礎(chǔ)知識復(fù)習(xí)資料
          高三數(shù)學(xué)基礎(chǔ)知識復(fù)習(xí)資料

          學(xué)習(xí)數(shù)學(xué)一定要打好基礎(chǔ),高三數(shù)學(xué)基礎(chǔ)知識有哪些呢?下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)基礎(chǔ)知識復(fù)習(xí)資料,希望對大家有所幫助! 高三數(shù)學(xué)基礎(chǔ)知

        • 高三數(shù)學(xué)基礎(chǔ)知識總結(jié)
          高三數(shù)學(xué)基礎(chǔ)知識總結(jié)

          學(xué)習(xí)數(shù)學(xué)一定要打好基礎(chǔ),要學(xué)會總結(jié)所學(xué)的知識點。那么你知道高考數(shù)學(xué)常考知識點有哪些嗎?下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)基礎(chǔ)知識,希望

        • 高三數(shù)學(xué)基礎(chǔ)公式整理
          高三數(shù)學(xué)基礎(chǔ)公式整理

          學(xué)習(xí)數(shù)學(xué)一定要記住數(shù)學(xué)公式,高中必修課本數(shù)學(xué)公式有哪些呢?下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)基礎(chǔ)公式,希望對大家有所幫助! 高三數(shù)學(xué)基礎(chǔ)公

        1446206 主站蜘蛛池模板: 欧美国产精品拍自| 久久人人97超碰国产精品| 色婷婷一区二区三区四区| 国产最大成人亚洲精品| 福利一区二区1000| 无码人妻丝袜在线视频红杏| 国产精品毛片一区二区| av永久免费网站在线观看| 中文无码高潮到痉挛在线视频| 亚洲乱色一区二区三区丝袜| 日韩在线视频线观看一区| 国产精品无码成人午夜电影| 国产精品一精品二精品三| 起碰免费公开97在线视频| 中文字幕av一区二区| 亚洲国产片一区二区三区| 九九在线精品国产| 中文日韩在线一区二区| 久久精品国产成人午夜福利| 乱妇乱女熟妇熟女网站| 亚洲欧美在线观看品| 亚洲狠狠色丁香婷婷综合| 国产伦精区二区三区视频| 无码人妻丰满熟妇区五十路在线| 美女黄网站人色视频免费国产| 中文字幕自拍偷拍福利视频| 国产高潮又爽又刺激的视频| 国产久久热这里只有精品| 怡红院一区二区三区在线| 色视频在线观看免费视频| 国产乱人伦av在线无码| 一本色道久久加勒比综合| 人妻少妇精品中文字幕| 精品无码国产日韩制服丝袜| 久久caoporn国产免费| 国产拗精品一区二区三区| 欧洲精品色在线观看| 国产AV国片精品有毛| 久久久久久久综合日本| 国模一区二区三区私拍视频| 国产边摸边吃奶边叫做激情视频|