<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 >

        高中數學必修一知識點大全

        時間: 維維20 分享

        想必有很多的同學是非常的想知道,高中數學有哪些重要的知識點,為了方便大家學習,下面小編給大家分享一些高中數學必修一知識點,希望能夠幫助大家,歡迎大家閱讀學習!

        高中數學必修一知識點大全

        高中數學必修一知識點 篇1

        一、集合有關概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

        2、集合的中元素的三個特性:

        1.元素的確定性;

        2.元素的互異性;

        3.元素的無序性

        說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

        (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

        (4)集合元素的三個特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

        1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

        2.集合的表示方法:列舉法與描述法。

        注意啊:常用數集及其記法:

        非負整數集(即自然數集)記作:N

        正整數集N-或N+整數集Z有理數集Q實數集R

        關于“屬于”的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A

        列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

        ①語言描述法:例:{不是直角三角形的三角形}

        ②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

        4、集合的分類:

        1.有限集含有有限個元素的集合

        2.無限集含有無限個元素的集合

        3.空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關系

        1.“包含”關系子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

        2.“相等”關系(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-11}“元素相同”

        結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

        ①任何一個集合是它本身的子集。A?A

        ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果A?BB?C那么A?C

        ④如果A?B同時B?A那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規定:空集是任何集合的子集,空集是任何非空集合的真子集。

        三、集合的運算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

        A∪φ=AA∪B=B∪A.

        4、全集與補集

        (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        記作:CSA即CSA={x?x?S且x?A}

        (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

        (3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

        高中數學必修一知識點 篇2

        二次函數

        I.定義與定義表達式

        一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

        (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

        則稱y為x的二次函數。

        二次函數表達式的右邊通常為二次三項式。

        II.二次函數的三種表達式

        一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

        頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉化中,有如下關系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數的圖像

        在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

        IV.拋物線的性質

        1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

        特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2.拋物線有一個頂點P,坐標為

        P(-b/2a,(4ac-b^2)/4a)

        當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

        3.二次項系數a決定拋物線的開口方向和大小。

        當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        高一數學必修1函數的知識點篇四:一次函數

        一、定義與定義式:

        自變量x和因變量y有如下關系:

        y=kx+b

        則此時稱y是x的一次函數。

        特別地,當b=0時,y是x的正比例函數。

        即:y=kx(k為常數,k≠0)

        二、一次函數的性質:

        1.y的變化值與對應的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數b取任何實數)

        2.當x=0時,b為函數在y軸上的截距。

        三、一次函數的圖像及性質:

        1.作法與圖形:通過如下3個步驟

        (1)列表;

        (2)描點;

        (3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

        2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

        3.k,b與函數圖像所在象限:

        當k>0時,直線必通過一、三象限,y隨x的增大而增大;

        當k<0時,直線必通過二、四象限,y隨x的增大而減小。

        當b>0時,直線必通過一、二象限;

        當b=0時,直線通過原點

        當b<0時,直線必通過三、四象限。

        特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

        這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

        高中數學必修一知識點 篇3

        反比例函數

        形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

        自變量x的取值范圍是不等于0的一切實數。

        反比例函數圖像性質:

        反比例函數的圖像為雙曲線。

        由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

        另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        上面給出了k分別為正和負(2和-2)時的函數圖像。

        當K>0時,反比例函數圖像經過一,三象限,是減函數

        當K<0時,反比例函數圖像經過二,四象限,是增函數

        反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

        高中數學必修一知識點 篇4

        空間幾何體表面積體積公式:

        1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、a-邊長,S=6a2,V=a3

        4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

        5、棱柱S-h-高V=Sh

        6、棱錐S-h-高V=Sh/3

        7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

        8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

        9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

        11、r-底半徑h-高V=πr^2h/3

        12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

        14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

        15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

        16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

        17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

        高中數學必修一知識點 篇5

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        (2)直線的斜率

        ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

        ②過兩點的直線的斜率公式:

        注意下面四點:

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關;

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        (3)直線方程

        ①點斜式:直線斜率k,且過點

        注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

        ②斜截式:,直線斜率為k,直線在y軸上的截距為b

        ③兩點式:()直線兩點,

        ④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

        ⑤一般式:(A,B不全為0)

        ⑤一般式:(A,B不全為0)

        注意:○1各式的適用范圍

        ○2特殊的方程如:平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數);

        (4)直線系方程:即具有某一共同性質的直線

        知識點高中數學必修一相關文章:

        高一數學必修一知識點匯總

        高中數學高一數學必修一知識點

        高中數學必修一知識點總結

        高中數學必修一復習提綱

        高一數學必修一知識點總結

        高中數學必修1知識點總結

        高一數學必修一知識點總結歸納

        高一數學必修1知識點歸納

        高一數學必修1知識點

        高中數學必修一復習

        906801 主站蜘蛛池模板: 人妻人人做人做人人爱| 亚洲一区二区三区国产精品| 2021中文字幕亚洲精品| 99久久精品国产精品亚洲| 久久精品无码一区二区国产区| 2021av在线天堂网| 丰满人妻无码∧v区视频 | 国产在线观看免费观看不卡| 亚洲丰满熟女一区二区v| 波多野结衣久久一区二区| 国产在线自拍一区二区三区| 深夜福利资源在线观看| 免费a级毛片无码av| 久久亚洲中文字幕伊人久久大 | 人妻美女免费在线视频| 日韩毛片在线视频x| 一本色道久久—综合亚洲| 国产成人综合久久亚洲av| 深夜精品免费在线观看| 一二三三免费观看视频| 日韩美女亚洲性一区二区| 悠悠色成人综合在线观看| 国产女人喷潮视频免费| 人妻少妇456在线视频| 久久精品国产6699国产精| 国产a在视频线精品视频下载| 91精品国产高清久久久久久g| 蜜桃mv在线播放免费观看视频| 专区亚洲欧洲日产国码AV| av毛片免费在线播放| 性欧美三级在线观看| 国产av精品一区二区三区| 成人av午夜在线观看| 女同久久一区二区三区| 国产精品免费中文字幕| 国产偷窥厕所一区二区| 18+内射| 亚洲欧美日本久久网站| 国产无遮挡免费真人视频在线观看 | 极品无码人妻巨屁股系列| 亚洲国产成人无码电影|