<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦>學習方法>高中學習方法>高一學習方法>高一數學>

        高一數學知識點總結【必修一】

        時間: 淑娟0 分享

        高一數學怎么學? 確保課堂效率是成敗的關鍵,切忌上課不聽,晚上補!今天小編在這給大家整理了高一數學知識點總結,接下來隨著小編一起來看看吧!

        高一數學知識點總結(一)

        第一章 集合與函數概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

        2、集合的中元素的三個特性:元素的確定性;元素的互異性;元素的無序性.

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A

        列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.

        ①語言描述法:例:{不是直角三角形的三角形}

        ②數學式子描述法

        二、函數的有關概念

        1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

        一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射.記作“f:A B”

        給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

        說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象.

        高一數學知識點總結(二)

        【第二章:基本初等函數】

        一、指數函數

        (一)指數與指數冪的運算

        1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

        當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

        當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

        注意:當是奇數時,當是偶數時,

        2.分數指數冪

        正數的分數指數冪的意義,規定:

        0的正分數指數冪等于0,0的負分數指數冪沒有意義

        指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

        3.實數指數冪的運算性質

        (二)指數函數及其性質

        1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

        注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

        2、指數函數的圖象和性質

        高一數學知識點總結(三)

        【第三章:第三章函數的應用】

        1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

        2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

        方程有實數根函數的圖象與軸有交點函數有零點.

        3、函數零點的求法:

        求函數的零點:

        (1)(代數法)求方程的實數根;

        (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.

        4、二次函數的零點:

        二次函數.

        1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

        3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

        3.1函數與方程閱讀與思考 中外歷史上的方程求解信息技術應用 借助信息技術求方程的近似解3.2函數模型及其應用信息技術應用 收集數據并建立函數模型。

        高一數學知識點總結(四)

        多面體

        1、棱柱

        棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

        棱柱的性質

        (1)側棱都相等,側面是平行四邊形

        (2)兩個底面與平行于底面的截面是全等的多邊形

        (3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

        2、棱錐

        棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的性質:

        (1)側棱交于一點。側面都是三角形

        (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

        3、正棱錐

        正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質:

        (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (3)多個特殊的直角三角形

        a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

        b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

        1.1柱、錐、臺、球的結構特征

        1.2空間幾何體的三視圖和直觀圖

        11三視圖:

        正視圖:從前往后

        側視圖:從左往右

        俯視圖:從上往下

        22畫三視圖的原則:

        長對齊、高對齊、寬相等

        33直觀圖:斜二測畫法

        44斜二測畫法的步驟:

        (1).平行于坐標軸的線依然平行于坐標軸;

        (2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;

        (3).畫法要寫好。

        5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側棱(4)成圖

        1.3空間幾何體的表面積與體積

        (一)空間幾何體的表面積

        1棱柱、棱錐的表面積:各個面面積之和

        2圓柱的表面積3圓錐的表面積

        4圓臺的表面積

        5球的表面積

        (二)空間幾何體的體積

        1柱體的體積

        2錐體的體積

        3臺體的體積

        4球體的體積

        高一數學知識點總結(五)

        立體幾何初步

        NO.1 柱、錐、臺、球的結構特征

        棱柱

        定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

        幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        棱錐

        定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點字母,如五棱錐

        幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        棱臺

        定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

        分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

        表示:用各頂點字母,如五棱臺

        幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

        圓柱

        定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

        圓錐

        定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

        圓臺

        定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

        球體

        定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

        NO.2 空間幾何體的三視圖

        定義三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

        俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

        側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

        NO.3 空間幾何體的直觀圖——斜二測畫法

        斜二測畫法

        斜二測畫法特點

        ①原來與x軸平行的線段仍然與x平行且長度不變;

        ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

        直線與方程

        直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        直線的斜率

        定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

        過兩點的直線的斜率公式:

        (注意下面四點)

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關;

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        冪函數

        定義

        形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

        定義域和值域

        當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

        性質

        對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

        排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

        排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

        排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

        指數函數

        指數函數

        (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

        (2)指數函數的值域為大于0的實數集合。

        (3)函數圖形都是下凹的。

        (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

        (5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

        (6)函數總是在某一個方向上無限趨向于X軸,永不相交。

        (7)函數總是通過(0,1)這點。

        (8)顯然指數函數無界。

        奇偶性

        定義

        一般地,對于函數f(x)

        (1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

        (2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

        (3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

        (4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

        高一數學知識點總結【必修一】相關文章

        高一數學必修一知識點匯總

        高中數學高一數學必修一知識點

        高一數學知識點總結歸納

        高一數學知識點總結(人教版)

        高一數學必修一集合公式知識點與學習方法

        高一數學必修一公式大全

        高一數學公式必修一

        高一數學必修一集合練習題含答案

        高中數學高一數學必修一知識點與學習方法

        474638
        主站蜘蛛池模板: 麻豆第一区mv免费观看网站| 日韩一卡2卡3卡4卡2021免费观看国色天香 | 国产精品高清一区二区三区| 一二三四中文字幕日韩乱码| 国产精品va在线观看无码不卡| 亚洲成人av一区免费看| 91精品国产自产在线蜜臀| 蜜臀91精品高清国产福利| 久久亚洲综合精品成人网| 国产精品 第一页第二页| 92国产精品午夜福利免费| 国产综合久久久久鬼色| 黑人巨茎大战俄罗斯美女| 99久久免费国产精品| 国产女人高潮叫床视频| 亚洲av无码一区东京热| 又黄又无遮挡AAAAA毛片| 亚洲不卡av不卡一区二区| 亚洲av片在线免费观看| 99久久激情国产精品| 国产91丝袜在线观看| 成年午夜无码av片在线观看| 欧美成人午夜精品免费福利| 精品国产一区二区三区国产馆| 神马视频| 动漫AV纯肉无码AV电影网| 国产一区| 国内在线视频一区二区三区| 国产免费午夜福利在线播放| 免费一区二三区三区蜜桃| 亚洲一区二区三成人精品| 国产精品一区久久人人爽| 视频免费完整版在线播放| 麻豆精品一区二区综合av| 亚洲熟妇自偷自拍另类| 日本高清在线观看WWW色| 国产精品自拍中文字幕| 国产a级黄色一区二区| 国产一级视频久久| 国产精品美女久久久久av爽| 精品无码国产一区二区三区AV|