<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

        高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)

        時(shí)間: 維維0 分享

        由一個(gè)或多個(gè)元素所構(gòu)成的叫做集合,集合是數(shù)學(xué)中一個(gè)基本概念,它是集合論的研究對(duì)象,集合是指具有某種特定性質(zhì)的具體的或抽象的對(duì)象匯總成的集體,這些對(duì)象稱為該集合的元素。下面給大家分享一些關(guān)于高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

        高一數(shù)學(xué)集合知識(shí)點(diǎn)1

        集合及其表示1、集合的含義:

        “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

        所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

        2、集合的表示

        通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

        有一些特殊的集合需要記憶:

        非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N-或N+

        整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        集合的表示方法:列舉法與描述法。

        ①列舉法:{a,b,c……}

        ②描述法:將集合中的元素的公共屬性描述出來(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

        ③語(yǔ)言描述法:例:{不是直角三角形的三角形}

        例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

        強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

        A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

        3、集合的三個(gè)特性

        (1)無(wú)序性

        指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

        例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

        解:,A=B

        注意:該題有兩組解。

        (2)互異性

        指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

        (3)確定性

        集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

        高一數(shù)學(xué)集合知識(shí)點(diǎn)2

        集合間的基本關(guān)系1.子集,A包含于B,有兩種可能

        (1)A是B的一部分,

        (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

        反之:集合A不包含于集合B。

        2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

        4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

        高一數(shù)學(xué)集合知識(shí)點(diǎn)3

        集合的分類(1)按元素屬性分類,如點(diǎn)集,數(shù)集。(2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

        關(guān)于集合的概念:

        (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

        (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

        (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

        集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

        含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

        非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

        在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N-;

        整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

        有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

        實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

        1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

        有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

        例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

        無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

        2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

        例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

        而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

        {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

        大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

        一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

        它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

        高一數(shù)學(xué)集合知識(shí)點(diǎn)4

        數(shù)學(xué)是利用符號(hào)語(yǔ)言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

        2、集合的中元素的三個(gè)特性:

        1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

        說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

        (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

        (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

        (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

        3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法.

        注意啊:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集 N_或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

        關(guān)于屬于的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

        列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.

        描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

        ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

        ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

        4、集合的分類:

        1.有限集 含有有限個(gè)元素的集合

        2.無(wú)限集 含有無(wú)限個(gè)元素的集合

        3.空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.包含關(guān)系子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.相等關(guān)系(55,且55,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的.元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

        ① 任何一個(gè)集合是它本身的子集.AA

        ②真子集:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

        ③如果 AB, BC ,那么 AC

        ④ 如果AB 同時(shí) BA 那么A=B

        3. 不含任何元素的集合叫做空集,記為

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

        三、集合的運(yùn)算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作AB(讀作A交B),即AB={x|xA,且xB}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

        3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

        A= A ,AB = BA.

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

        高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)相關(guān)文章

        高一數(shù)學(xué)集合知識(shí)點(diǎn)匯總

        高一數(shù)學(xué)集合知識(shí)點(diǎn)及例題講解

        高一數(shù)學(xué)集合知識(shí)點(diǎn)匯總(2)

        高一數(shù)學(xué)必修一集合公式知識(shí)點(diǎn)與學(xué)習(xí)方法

        高一數(shù)學(xué)集合知識(shí)點(diǎn)及練習(xí)題

        高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【必修一】

        高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)

        由一個(gè)或多個(gè)元素所構(gòu)成的叫做集合,集合是數(shù)學(xué)中一個(gè)基本概念,它是集合論的研究對(duì)象,集合是指具有某種特定性質(zhì)的具體的或抽象的對(duì)象匯總成的集體,這些對(duì)象稱為該集合的元素。下面給大家分享一些關(guān)于高一數(shù)學(xué)集合
        推薦度:
        點(diǎn)擊下載文檔文檔為doc格式
        649978 主站蜘蛛池模板: 特黄三级又爽又粗又大| 亚洲最大成人av在线| 国产香蕉尹人在线视频你懂的| 欧美寡妇xxxx黑人猛交| 中文字幕人妻色偷偷久久| 亚洲人成网站18禁止无码| 国产精品污双胞胎在线观看| 中文字幕有码高清日韩| 国产亚洲一在无在线观看| 国产精品一久久香蕉产线看 | 日本三级理论久久人妻电影| 99视频九九精品视频在线观看| 中文字幕免费视频| 日韩精品二区三区四区| 亚洲精品视频久久偷拍| 中文字幕日韩有码一区| 总裁与秘书啪啪日常h| 日韩亚洲AV无码一区二区不卡 | 色综合久久久久久久久久| 午夜激情小视频一区二区| 亚洲精品久久麻豆蜜桃| 国产激情电影综合在线看| 97国产一区二区精品久久呦| 亚洲一区二区精品动漫| 国产精品精品一区二区三| 国产精品中文字幕视频| 91亚洲国产三上悠亚在线播放| 精品女同一区二区三区在线| 国产精品久久久久久福利69堂| 五月丁香在线视频| 国产精品99久久免费| 国产尤物精品自在拍视频首页| 免费a级毛片18以上观看精品| 亚洲一区二区在线无码| 日本高清一区免费中文视频| 日韩一区二区三区在线观院 | 国产精品亚洲片夜色在线| 欧美性猛交xxxx乱大交丰满| 麻豆一区二区中文字幕| 拔萝卜视频播放在线观看免费| 国产极品粉嫩尤物一线天|