<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數學 > 高三數學必修一知識點

        高三數學必修一知識點

        時間: 文娟843 分享

        高三數學必修一知識點

          學習數學需要講究方法和技巧,更要學會對知識點進行歸納整理。下面是學習啦小編為大家整理的高三數學必修一知識點,希望對大家有所幫助!

          高三數學必修一知識點總結:第一章 集合與函數概念

          一、集合有關概念

          1. 集合的含義

          2. 集合的中元素的三個特性:

          (1) 元素的確定性如:世界上最高的山

          (2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

          3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          (2) 集合的表示方法:列舉法與描述法。

          u 注意:常用數集及其記法:

          非負整數集(即自然數集) 記作:N

          正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

          1) 列舉法:{a,b,c……}

          2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}

          3) 語言描述法:例:{不是直角三角形的三角形}

          4) Venn圖:

          4、集合的分類:

          (1) 有限集 含有有限個元素的集合

          (2) 無限集 含有無限個元素的集合

          (3) 空集 不含任何元素的集合  例:{x|x2=-5}

          二、集合間的基本關系

          1.“包含”關系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

          實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

          即:① 任何一個集合是它本身的子集。AÍA

          ②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作AB(或BA)

          ③如果 AÍB, BÍC ,那么 AÍC

          ④ 如果AÍB 同時 BÍA 那么A=B

          3. 不含任何元素的集合叫做空集,記為Φ

          規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          u 有n個元素的集合,含有2n個子集,2n-1個真子

          三、集合的運算

        運算類型

        交 集

        并 集

        補 集

        定 義

        由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}).

        設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        記作,即

        CSA=

        AA=A

        AΦ=Φ

        AB=BA

        ABA

        ABB

        AA=A

        AΦ=A

        AB=BA

        ABA

        ABB

        (CuA) (CuB)

        = Cu(AB)

        (CuA) (CuB)

        = Cu(AB)

        A(CuA)=U

        A(CuA)= Φ.

          例題:

          1.下列四組對象,能構成集合的是 ( )

          A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數

          2.集合{a,b,c }的真子集共有 個

          3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是 .

          4.設集合A=,B=,若AB,則的取值范圍是

          5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,

          兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。

          6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .

          7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

          二、函數的有關概念

          1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

          注意:

          1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

          求函數的定義域時列不等式組的主要依據是:

          (1)分式的分母不等于零;

          (2)偶次方根的被開方數不小于零;

          (3)對數式的真數必須大于零;

          (4)指數、對數式的底必須大于零且不等于1.

          (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

          (6)指數為零底不可以等于零,

          (7)實際問題中的函數的定義域還要保證實際問題有意義.

          u 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)

          (見課本21頁相關例2)

          2.值域 : 先考慮其定義域

          (1)觀察法

          (2)配方法

          (3)代換法

          3. 函數圖象知識歸納

          (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

          (2) 畫法

          A、 描點法:

          B、 圖象變換法

          常用變換方法有三種

          1) 平移變換

          2) 伸縮變換

          3) 對稱變換

          4.區間的概念

          (1)區間的分類:開區間、閉區間、半開半閉區間

          (2)無窮區間

          (3)區間的數軸表示.

          5.映射

          一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)”

          對于映射f:A→B來說,則應滿足:

          (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

          (2)集合A中不同的元素,在集合B中對應的象可以是同一個;

          (3)不要求集合B中的每一個元素在集合A中都有原象。

          6.分段函數

          (1)在定義域的不同部分上有不同的解析表達式的函數。

          (2)各部分的自變量的取值情況.

          (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

          補充:復合函數

          如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

          二.函數的性質

          1.函數的單調性(局部性質)

          (1)增函數

          設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.

          如果對于區間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

          注意:函數的單調性是函數的局部性質;

          (2) 圖象的特點

          如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

          (3).函數單調區間與單調性的判定方法

          (A) 定義法:

          1 任取x1,x2∈D,且x1<x2;

          2 作差f(x1)-f(x2);

          3 變形(通常是因式分解和配方);

          4 定號(即判斷差f(x1)-f(x2)的正負);

          5 下結論(指出函數f(x)在給定的區間D上的單調性).

          (B)圖象法(從圖象上看升降)

          (C)復合函數的單調性

          復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

          注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集.

          8.函數的奇偶性(整體性質)

          (1)偶函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

          (2).奇函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

          (3)具有奇偶性的函數的圖象的特征

          偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

          利用定義判斷函數奇偶性的步驟:

          1首先確定函數的定義域,并判斷其是否關于原點對稱;

          2確定f(-x)與f(x)的關系;

          3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

          注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .

          9、函數的解析表達式

          (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

          (2)求函數的解析式的主要方法有:

          1) 湊配法

          2) 待定系數法

          3) 換元法

          4) 消參法

          10.函數最大(小)值(定義見課本p36頁)

          1 利用二次函數的性質(配方法)求函數的最大(小)值

          2 利用圖象求函數的最大(小)值

          3 利用函數單調性的判斷函數的最大(小)值:

          如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

          如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

          例題:

          1.求下列函數的定義域:

          ⑴ ⑵

          2.設函數的定義域為,則函數的定義域為_ _

          3.若函數的定義域為,則函數的定義域是

          4.函數 ,若,則=

          5.求下列函數的值域:

          ⑴ ⑵

          (3) (4)

          6.已知函數,求函數,的解析式

          7.已知函數滿足,則= 。

          8.設是R上的奇函數,且當時,,則當時=

          在R上的解析式為

          9.求下列函數的單調區間:

          ⑴ ⑵ ⑶

          10.判斷函數的單調性并證明你的結論.

          11.設函數判斷它的奇偶性并且求證:.

        1448499 主站蜘蛛池模板: 99国产精品白浆在线观看免费| 国产亚洲精久久久久久无码AV| 亚洲综合色婷婷中文字幕| 国产一区二区三区免费观看| 色猫成人网| 久久亚洲国产成人精品性色| 亚洲国产日韩欧美一区二区三区| 色婷婷婷丁香亚洲综合| 亚洲成精品动漫久久精久| 国产午夜精品久久精品电影| 国产精品综合色区在线观看| 天天看片天天av免费观看| 日日碰狠狠添天天爽| 亚洲精中文字幕二区三区| 欧美z0zo人禽交另类视频| 蜜臀在线播放一区在线播放| 久久久久亚洲AV无码专| 无码熟妇人妻av在线电影| 国产一区二区三区四区五区加勒比| 亚洲啪啪精品一区二区的| 日本熟妇XXXX潮喷视频| 双腿张开被5个男人调教电影| 四虎永久精品免费视频| 亚洲午夜成人精品电影在线观看| 国产欧美日韩高清在线不卡| 精品国产粉嫩一区二区三区| 久9视频这里只有精品试看| 久久精品一偷一偷国产| 妇女自拍偷自拍亚洲精品| 国产欧美va欧美va香蕉在| 久久99热成人精品国产| 亚洲成av人片无码天堂下载| 色777狠狠狠综合| 无码av中文字幕一区二区三区| xxxxx欧美视频在线观看免费看| 在线国产毛片| 蜜臀精品视频一区二区三区| 亚洲卡1卡2卡新区网站| 成人免费看片又大又黄| 亚洲欧美激情精品一区二区| 99久久精品国产综合婷婷|