<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 >

        八年級數(shù)學上冊勾股定理單元測試卷

        時間: 於寶21274 分享

          勾股定理是三角形圖形學習的最基礎的知識點,也是解題的必備知識點,下面是小編給大家?guī)淼陌四昙墧?shù)學上冊《第1章 勾股定理》單元測試卷,希望能夠幫助到大家!

          八年級數(shù)學上冊《第1章 勾股定理》單元測試卷

          一、選擇題

          1.△ABC中∠A、∠B、∠C的對邊分別是a、b、c,下列命題中的假命題是(  )

          A.如果∠C﹣∠B=∠A,則△ABC是直角三角形

          B.如果c2=b2﹣a2,則△ABC是直角三角形,且∠C=90°

          C.如果(c+a)(c﹣a)=b2,則△ABC是直角三角形

          D.如果∠A:∠B:∠C=5:2:3,則△ABC是直角三角形

          2.下列各組數(shù)的三個數(shù),可作為三邊長構成直角三角形的是(  )

          A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5

          3.勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為(  )

          A.90 B.100 C.110 D.121

          4.在Rt△ABC中,斜邊長BC=3,AB2+AC2+BC2的值為(  )

          A.18 B.9 C.6 D.無法計算

          5.在Rt△ABC中,a,b,c為△ABC三邊長,則下列關系正確的是(  )

          A.a2+b2=c2 B.a2+c2=b2

          C.b2+c2=a2 D.以上關系都有可能

          6.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為(  )

          A.42 B.32 C.42或32 D.37或33

          二.填空題

          7.已知a,b,c分別是Rt△ABC的兩條直角邊長和斜邊長,且a+b=14,c=10,則S△ABC=  .

          8.小強在操場上向東走200m后,又走了150m,再走250m回到原地,小強在操場上向東走了200m后,又走150m的方向是  .

          9.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC、BC為直徑作半圓,面積分別記為S1、S2,則S1+S2等于  .

          三.解答題

          10.如圖,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.

          11.如圖,有一個長方形的場院ABCD,其中AB=9m,AD=12m,在B處豎直立著一根電線桿,在電線桿上距地面8m的E處有一盞電燈.點D到燈E的距離是多少?

          12.如圖是一束平行的陽光從教室窗戶射入的平面示意圖,小強同學測量出BC=1m,

          NC= m,BN= m,AC=4.5m,MC=6m,求MA的長.

          13.如圖,長方體的長為15,寬為10,高為20,點B離點C的距離是5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是多少?

          14.如圖,在長方形紙片ABCD中,AB=18,把長方形紙片沿直線AC折疊,點B落在點E處,AE交DC于點F,若AF=13,求AD的長.

          15.如圖,對任意符合條件的直角三角形BAC,繞其銳角頂點逆時針旋轉90°得△DAE,所以∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖形寫出一種證明勾股定理的方法.

          北師大新版八年級數(shù)學上冊《第1章 勾股定理》2016年單元測試卷

          參考答案與試題解析

          一、選擇題

          1.△ABC中∠A、∠B、∠C的對邊分別是a、b、c,下列命題中的假命題是(  )

          A.如果∠C﹣∠B=∠A,則△ABC是直角三角形

          B.如果c2=b2﹣a2,則△ABC是直角三角形,且∠C=90°

          C.如果(c+a)(c﹣a)=b2,則△ABC是直角三角形

          D.如果∠A:∠B:∠C=5:2:3,則△ABC是直角三角形

          【考點】KS:勾股定理的逆定理;K7:三角形內角和定理.

          【分析】直角三角形的判定方法有:①求得一個角為90°,②利用勾股定理的逆定理.

          【解答】解:A、根據(jù)三角形內角和定理,可求出角C為90度,故正確;

          B、解得應為∠B=90度,故錯誤;

          C、化簡后有c2=a2+b2,根據(jù)勾股定理,則△ABC是直角三角形,故正確;

          D、設三角分別為5x,3x,2x,根據(jù)三角形內角和定理可求得三外角分別為:90度,36度,54度,則△ABC是直角三角形,故正確.

          故選B.

          【點評】本題考查了直角三角形的判定.

          2.下列各組數(shù)的三個數(shù),可作為三邊長構成直角三角形的是(  )

          A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5

          【考點】KS:勾股定理的逆定理.

          【分析】根據(jù)勾股定理的逆定理即可判斷.

          【解答】解:∵0.32+0.42=0.25,0.52=0.25,

          ∴0.32+0.42=0.52,

          ∴0.3,0.4,0.5能構成直角三角形的三邊.

          故選D.

          【點評】本題考查勾股定理的逆定理,解題的關鍵是記住勾股定理的逆定理的解題格式,屬于中考常考題型.

          3.勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為(  )

          A.90 B.100 C.110 D.121

          【考點】KR:勾股定理的證明.

          【專題】1 :常規(guī)題型;16 :壓軸題.

          【分析】延長AB交KF于點O,延長AC交GM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.

          【解答】解:如圖,延長AB交KF于點O,延長AC交GM于點P,

          所以四邊形AOLP是正方形,

          邊長AO=AB+AC=3+4=7,

          所以KL=3+7=10,LM=4+7=11,

          因此矩形KLMJ的面積為10×11=110.

          故選:C.

          【點評】本題考查了勾股定理的證明,作出輔助線構造出正方形是解題的關鍵.

          4.在Rt△ABC中,斜邊長BC=3,AB2+AC2+BC2的值為(  )

          A.18 B.9 C.6 D.無法計算

          【考點】KQ:勾股定理.

          【分析】利用勾股定理將AB2+AC2轉化為BC2,再求值.

          【解答】解:∵Rt△ABC中,BC為斜邊,

          ∴AB2+AC2=BC2,

          ∴AB2+AC2+BC2=2BC2=2×32=18.

          故選A.

          【點評】本題考查了勾股定理.正確判斷直角三角形的直角邊、斜邊,利用勾股定理得出等式是解題的關鍵.

          5.在Rt△ABC中,a,b,c為△ABC三邊長,則下列關系正確的是(  )

          A.a2+b2=c2 B.a2+c2=b2

          C.b2+c2=a2 D.以上關系都有可能

          【考點】KQ:勾股定理.

          【分析】根據(jù)勾股定理,分∠C是直角,∠B是直角,∠A是直角,三種情況討論可得a,b,c之間的關系.

          【解答】解:在Rt△ABC中,a,b,c為△ABC三邊長,

          ∠C是直角,則有a2+b2=c2;

          ∠B是直角,則有a2+c2=b2;

          ∠A是直角,則有b2+c2=a2.

          故選:D.

          【點評】考查了勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.

          6.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為(  )

          A.42 B.32 C.42或32 D.37或33

          【考點】KQ:勾股定理.

          【分析】本題應分兩種情況進行討論:

          (1)當△ABC為銳角三角形時,在Rt△ABD和Rt△ACD中,運用勾股定理可將BD和CD的長求出,兩者相加即為BC的長,從而可將△ABC的周長求出;

          (2)當△ABC為鈍角三角形時,在Rt△ABD和Rt△ACD中,運用勾股定理可將BD和CD的長求出,兩者相減即為BC的長,從而可將△ABC的周長求出.

          【解答】解:此題應分兩種情況說明:

          (1)當△ABC為銳角三角形時,在Rt△ABD中,

          BD= = =9,

          在Rt△ACD中,

          CD= = =5

          ∴BC=5+9=14

          ∴△ABC的周長為:15+13+14=42;

          (2)當△ABC為鈍角三角形時,

          在Rt△ABD中,BD= = =9,

          在Rt△ACD中,CD= = =5,

          ∴BC=9﹣5=4.

          ∴△ABC的周長為:15+13+4=32

          ∴當△ABC為銳角三角形時,△ABC的周長為42;當△ABC為鈍角三角形時,△ABC的周長為32.

          故選C.

          【點評】此題考查了勾股定理及解直角三角形的知識,在解本題時應分兩種情況進行討論,易錯點在于漏解,同學們思考問題一定要全面,有一定難度.

          二.填空題

          7.已知a,b,c分別是Rt△ABC的兩條直角邊長和斜邊長,且a+b=14,c=10,則S△ABC= 24 .

          【考點】KQ:勾股定理;K3:三角形的面積.

          【分析】直接利用勾股定理結合已知得出關于b的等式,進而求出答案.

          【解答】解:∵a,b,c分別是Rt△ABC的兩條直角邊長和斜邊長,且a+b=14,c=10,

          ∴a=14﹣b,則(14﹣b)2+b2=c2,

          故(14﹣b)2+b2=102,

          解得:b1=6,b2=8,

          則a1=8,a2=6,

          即S△ABC= ab= ×6×8=24.

          故答案為:24.

          【點評】此題主要考查了勾股定理以及三角形面積求法,正確得出直角邊長是解題關鍵.

          8.小強在操場上向東走200m后,又走了150m,再走250m回到原地,小強在操場上向東走了200m后,又走150m的方向是 北或南 .

          【考點】KU:勾股定理的應用.

          【分析】據(jù)題意作出圖形,利用勾股定理的逆定理判定直角三角形即可確定答案.

          【解答】解:解:如圖,AB=200米,BC=BD=150米,AC=AD=250米,

          根據(jù)2002+1502=2502得:∠ABC=∠ABD=90°,

          ∴小強在操場上向東走了200m后,又走150m的方向是向北或向南,

          故答案為:向北或向南.

          故答案為北或南

          【點評】本題考查了勾股定理的應用,解題的關鍵是根據(jù)題意作出圖形,難度中等.

          9.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC、BC為直徑作半圓,面積分別記為S1、S2,則S1+S2等于 2π .

          【考點】KQ:勾股定理.

          【專題】11 :計算題.

          【分析】根據(jù)半圓面積公式結合勾股定理,知S1+S2等于以斜邊為直徑的半圓面積.

          【解答】解:S1= π( )2= πAC2,S2= πBC2,

          所以S1+S2= π(AC2+BC2)= πAB2=2π.

          故答案為:2π.

          【點評】此題根據(jù)半圓的面積公式以及勾股定理證明:以直角三角形的兩條直角邊為直徑的半圓面積和等于以斜邊為直徑的半圓面積,重在驗證勾股定理.

          三.解答題

          10.如圖,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.

          【考點】KQ:勾股定理.

          【分析】由已知可以利用勾股定理求得EC的長,從而可得到CD的長,再根據(jù)勾股定理求得AC的長即可.

          【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,

          ∴EC= =12,

          ∵DE=7,

          ∴CD=5,

          ∴AC= =12.

          【點評】此題考查學生對直角三角形的性質及勾股定理的運用.

          11.如圖,有一個長方形的場院ABCD,其中AB=9m,AD=12m,在B處豎直立著一根電線桿,在電線桿上距地面8m的E處有一盞電燈.點D到燈E的距離是多少?

          【考點】KU:勾股定理的應用.

          【分析】在Rt△ABD中求出BD,然后在Rt△EBD中利用勾股定理即可得出DE的長度.

          【解答】解:在Rt△BAD中,∠BAD=90°, 米,

          在Rt△EBD中,∠EBD=90°, 米.

          故點D到燈E的距離是17米.

          【點評】本題考查了勾股定理的應用,屬于基礎題,解答本題的關鍵是熟練掌握勾股定理的表達式.

          12.如圖是一束平行的陽光從教室窗戶射入的平面示意圖,小強同學測量出BC=1m,

          NC= m,BN= m,AC=4.5m,MC=6m,求MA的長.

          【考點】KU:勾股定理的應用.

          【分析】先根據(jù)勾股定理的逆定理判斷出△BCN的形狀,再由勾股定理即可得出結論.

          【解答】解:∵BC=1m,NC= m,BN= m,

          ∴BC2=1,NC2= ,BN2= ,

          ∴BC2+NC2=BN2,

          ∴AC⊥MC.

          在Rt△ACM中,

          ∵AC=4.5m,MC=6m,MA2=AC2+CM2=56.25,

          ∴MA=7.5 m.

          【點評】本題考查的是勾股定理的應用,先根據(jù)題意判斷出AC⊥MC是解答此題的關鍵.

          13.如圖,長方體的長為15,寬為10,高為20,點B離點C的距離是5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是多少?

          【考點】KV:平面展開﹣最短路徑問題.

          【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體側面展開,然后利用兩點之間線段最短解答.

          【解答】解:只要把長方體的右側表面剪開與前面這個側面所在的平面形成一個長方形,如第1個圖:

          ∵長方體的寬為10,高為20,點B離點C的距離是5,

          ∴BD=CD+BC=10+5=15,AD=20,

          在直角三角形ABD中,根據(jù)勾股定理得:

          ∴AB= = =25;

          只要把長方體的右側表面剪開與上面這個側面所在的平面形成一個長方形,如第2個圖:

          ∵長方體的寬為10,高為20,點B離點C的距離是5,

          ∴BD=CD+BC=20+5=25,AD=10,

          在直角三角形ABD中,根據(jù)勾股定理得:

          ∴AB= = =5 ;

          只要把長方體的上表面剪開與后面這個側面所在的平面形成一個長方形,如第3個圖:

          ∵長方體的寬為10,高為20,點B離點C的距離是5,

          ∴AC=CD+AD=20+10=30,

          在直角三角形ABC中,根據(jù)勾股定理得:

          ∴AB= = =5 ;

          ∵25<5 ,

          ∴螞蟻爬行的最短距離是25.

          【點評】本題主要考查兩點之間線段最短.

          14.如圖,在長方形紙片ABCD中,AB=18,把長方形紙片沿直線AC折疊,點B落在點E處,AE交DC于點F,若AF=13,求AD的長.

          【考點】PB:翻折變換(折疊問題).

          【分析】由折疊得:∠EAC=∠BAC,AE=AB=18,根據(jù)平行線性質得:AF=FC=13,再求出EF=5,利用勾股定理求出EC的長,即AD的長.

          【解答】解:由折疊得:∠EAC=∠BAC,AE=AB=18,

          ∵四邊形ABCD為長方形,

          ∴DC∥AB,

          ∴∠DCA=∠BAC,

          ∴∠EAC=∠DCA,

          ∴FC=AF=13,

          ∵AB=18,AF=13,

          ∴EF=18﹣13=5,

          ∵∠E=∠B=90°,

          ∴EC= =12,

          ∵AD=BC=EC,

          ∴AD=12.

          【點評】本題是折疊問題,考查了長方形、折疊的性質,難度不大;屬于常考題型,熟練掌握折疊前后的兩個對應角相等;與平行線的內錯角相等得出等腰三角形,根據(jù)等角對等邊,求出邊的長,利用勾股定理解決問題.

          15.如圖,對任意符合條件的直角三角形BAC,繞其銳角頂點逆時針旋轉90°得△DAE,所以∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖形寫出一種證明勾股定理的方法.

          【考點】KR:勾股定理的證明.

          【分析】證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,化簡整理得到勾股定理.

          【解答】解:由圖可得:

          正方形ACFD的面積=四邊形ABFE的面積=Rt△BAE和Rt△BFE的面積之和,

          即S正方形ACFD=S△BAE+S△BFE,

          ∴b2= c2+ ,

          整理得:a2+b2=c2.

          【點評】本題主要考查了勾股定理的證明,勾股定理的證明方法有很多種,一般采用拼圖的方法證明.在解題時注意:先利用拼圖的方法拼圖,然后再利用面積相等,證明勾股定理.

        224378 主站蜘蛛池模板: 久久久久香蕉国产线看观看伊| 国产精品无码成人午夜电影| 伊在人亚洲香蕉精品区| 激情五月天自拍偷拍视频| 在线日韩日本国产亚洲| 亚洲午夜久久久影院伊人| 国产精品日韩精品日韩| 久久九九亚洲国产成人| 人妻少妇偷人精品一区| 亚洲中文字幕麻豆一区| 日韩有码中文字幕一区二区| 亚洲精品不卡av在线播放| 大尺度国产一区二区视频| 欧美国产综合视频| 忘忧草在线社区www中国中文| 综合成人亚洲网友偷自拍| 国产真人做受视频在线观看| 五月综合激情婷婷六月| 激情综合色综合啪啪五月| 九九成人免费视频| 人妻无码中文专区久久app| 亚洲欧美一区二区三区图片| 久久精品蜜芽亚洲国产av| 成年美女黄网站色大片免费看| 亚洲狠狠色丁香婷婷综合| 亚洲AV成人片不卡无码| 青草午夜精品视频在线观看| 国产精品大全中文字幕| 国产片av在线观看国语| 国产精品一区二区久久岳| 欧美videosdesexo吹潮| 日韩亚av无码一区二区三区| 亚洲中文字幕在线精品一区| 亚洲中文一区二区av| 日本一道一区二区视频| 精品国内自产拍在线观看| 精品无码久久久久成人漫画| 99精品这里只有精品高清视频| 色欲国产精品一区成人精品| 日韩欧美国产v一区二区三区| 国产成人无码免费视频在线|