關于北師大版初一數學知識點
學得越多,懂得越多,想得越多,領悟得就越多,就像滴水一樣,一滴水或許很快就會被太陽蒸發,但如果滴水不停的滴,就會變成一個水溝,越來越多,下面是小編為大家精心整理的關于北師大版初一數學知識點,希望對大家有所幫助。

角
1.角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。
2.角有以下的表示方法:
(1)用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間。
(2)用一個大寫字母表示.這個字母就是頂點.當有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示。
(3)用一個數字或一個希臘字母表示.在角的內部靠近角的頂點處畫一弧線,寫上希臘字母或數字.如圖的兩個角,分別記作∠α、∠1。
3.以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。
4.角的平分線:一般地,從一個角的頂點出發,把這個角分成兩個相等的角的射線,叫做這個角的平分線。
5.如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
6.同角(等角)的補角相等;同角(等角)的余角相等。
圖形初步認識
1.我們把實物中抽象的各種圖形統稱為幾何圖形。
2.有些幾何圖形(如長方體.正方體.圓柱.圓錐.球等)的各部分不都在同一平面內,它們是立體圖形。
3.有些幾何圖形(如線段.角.三角形.長方形.圓等)的各部分都在同一平面內,它們是平面圖形。
4.將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。
5.幾何體簡稱為體。
6.包圍著體的是面,面有平的面和曲的面兩種。
7.面與面相交的地方形成線,線和線相交的地方是點。
8.點動成面,面動成線,線動成體。
9.經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。
10.當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
11.點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點。
12.經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13.連接兩點間的線段的長度,叫做這兩點的距離。
整式的加減
1.都是數或字母的積的式子叫做單項式,單獨的一個數或一個字母也是單項式。
2.單項式中的數字因數叫做這個單項式的系數。
3.一個單項式中,所有字母的指數的和叫做這個單項式的次數。
4.幾個單項的和叫做多項式,其中,每個單項式叫做多項式的項,不含字母的項叫做常數項。
5.多項式里次數項的次數,叫做這個多項式的次數。
6.把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。
7.如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同。
8.如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。
9.一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
數軸
1.數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不
可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規定的。
2.數軸上的點與有理數的關系
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大;
⑵正數都大于0,負數都小于0,正數大于負數;
⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
4.數軸上特殊的(小)數
⑴最小的自然數是0,無的自然數;
⑵最小的正整數是1,無的正整數;
⑶的負整數是-1,無最小的負整數
5.a可以表示什么數
⑴a>0表示a是正數;反之,a是正數,則a>0;
⑵a<0表示a是負數;反之,a是負數,則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
北師大版初一數學知識點相關文章:
