<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦>學習方法>高中學習方法>高一學習方法>高一數學>

        高一必修一數學第一章知識點總結(2)

        時間: 文娟843 分享

          高一必修一數學:函數的有關概念

          1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

          注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3函數的定義域、值域要寫成集合或區間的形式.

          定義域補充

          能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實際問題中的函數的定義域還要保證實際問題有意義.

          (又注意:求出不等式組的解集即為函數的定義域。)

          構成函數的三要素:定義域、對應關系和值域

          再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

          (見課本21頁相關例2)

          值域補充

          (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

          3.函數圖象知識歸納

          (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.

          C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

          圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

          (2)畫法

          A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來.

          B、圖象變換法(請參考必修4三角函數)

          常用變換方法有三種,即平移變換、伸縮變換和對稱變換

          (3)作用:

          1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

          發現解題中的錯誤。

          4.快去了解區間的概念

          (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

          5.什么叫做映射

          一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f:AB”

          給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

          說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

          常用的函數表示法及各自的優點:

          1函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2解析法:必須注明函數的定義域;3圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;4列表法:選取的自變量要有代表性,應能反映定義域的特征.

          注意啊:解析法:便于算出函數值。列表法:便于查出函數值。圖象法:便于量出函數值

          補充一:分段函數(參見課本P24-25)

          在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.

          補充二:復合函數

          如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復合函數。

          例如:y=2sinXy=2cos(X2+1)

          7.函數單調性

          (1).增函數

          設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1

          如果對于區間D上的任意兩個自變量的值x1,x2,當x1

          注意:1函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;

          2必須是對于區間D內的任意兩個自變量x1,x2;當x1

          (2)圖象的特點

          如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

          (3).函數單調區間與單調性的判定方法

          (A)定義法:

          1任取x1,x2∈D,且x1

          (B)圖象法(從圖象上看升降)_

          (C)復合函數的單調性

          復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:

          函數

          單調性

          u=g(x)

          增

          增

          減

          減

          y=f(u)

          增

          減

          增

          減

          y=f[g(x)]

          增

          減

          減

          增

          注意:1、函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其并集.2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

          8.函數的奇偶性

          (1)偶函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

          (2)奇函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

          注意:1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

          2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).

          (3)具有奇偶性的函數的圖象的特征

          偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

          總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2確定f(-x)與f(x)的關系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

          注意啊:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.

          9、函數的解析表達式

          (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

          (2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

          10.函數最大(小)值(定義見課本p36頁)

          1利用二次函數的性質(配方法)求函數的最大(小)值2利用圖象求函數的最大(小)值3利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);


        猜你喜歡:

        1.數學必修一知識點總結

        2.高一上學期數學必修內容總結

        3.高一數學集合與函數概念知識總結

        4.高一數學第一章集合知識點歸納

        5.高一數學必修1知識點總結

        6.高一數學必修1各章知識點總結

        7.高一上數學知識點總結

        高一必修一數學第一章知識點總結(2)

        高一必修一數學: 函數的有關概念 1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯
        推薦度:
        點擊下載文檔文檔為doc格式
        1236200 主站蜘蛛池模板: 色吊丝av熟女中文字幕| 米奇亚洲国产精品思久久| 国产精品综合av一区二区| 丝袜a∨在线一区二区三区不卡| 人妻系列无码专区无码中出| 蜜桃臀无码AV在线观看| 欧美亚洲日韩国产人成在线播放 | 丰满少妇特黄一区二区三区| 国产日韩久久免费影院| 亚洲国产午夜精品福利| 亚洲熟女乱综合一区二区三区| 少妇又紧又色又爽又刺激视频| 欧美另类图区清纯亚洲| 83午夜电影免费| 国产亚洲精品第一综合另类无码无遮挡又大又爽又黄的视频 | 开心婷婷五月激情综合社区 | 好吊视频在线一区二区三区| 国产女人18毛片水真多1| 午夜福利在线永久视频| 377P欧洲日本亚洲大胆| 日韩精品国产二区三区| 一级欧美一级日韩片| 二区三区亚洲精品国产| 亚洲av日韩av综合aⅴxxx| 国产极品尤物粉嫩在线观看| 亚洲春色在线视频| 国产拗精品一区二区三区| 国产高清一区二区不卡| 老司机精品成人无码AV| 毛片免费观看视频| 无码伊人66久久大杳蕉网站谷歌| 永久免费AV无码网站大全| 亚洲中文字幕无码专区| 亚洲色欲色欲WWW在线丝| 欧美性受xxxx喷水性欧洲| 午夜DY888国产精品影院| 亚洲黄片一区二区三区| 成人网站免费观看永久视频下载| 亚洲日本在线电影| 亚洲精品国产中文字幕| 欧美日韩北条麻妃一区二区|