初中數學課教學案例分析(2)
活動二:探究五邊形、六邊形、十邊形的內角和。
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內角和)
方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內部一點出發,把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
方法3:從五邊形一邊上任意一點出發把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。
(二)引申思考,培養創新。
師:通過前面的討論,你能知道多邊形內角和嗎?
活動三:探究任意多邊形的內角和公式。
思考:(1)多邊形內角和與三角形內角和的關系?
(2)多邊形的邊數與內角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發現1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。
發現2:多邊形的邊數增加1,內角和增加180o。
發現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。
得出結論:多邊形內角和公式:(n-2)?180。
(三)實際應用,優勢互補。
1、口答:(1)七邊形內角和( )
(2)九邊形內角和( )
(3)十邊形內角和( )
2、搶答:(1)一個多邊形的內角和等于1260o,它是幾邊形?
(2)一個多邊形的內角和是1440o ,且每個內角都相等,則每個內角的度數是( )。
3、討論回答:一個多邊形的內角和比四邊形的內角和多540o,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?
(四)概括存儲。
學生自己歸納總結:
1、多邊形內角和公式。
2、運用轉化思想解決數學問題。
3、用數形結合的思想解決問題 。
(五)作業:練習冊第93頁1、2、3
六、教學反思:
1、教的轉變。本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發現結論后,利用幾何畫板直觀地展示,激發學生自覺探究數學問題,體驗發現的樂趣。
2、學的轉變。學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識層
面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變。整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師應盡量讓學生自己討論、思考歸納結論,教學過程呈現一種比較流暢的特征。
整節課學生與學生,學生與教師之間以“對話”、“討論”為出發點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
看過"初中數學課教學案例分析 "的還看了:
初中數學課教學案例分析(2)
上一篇:小學數學自主學習模式探究
下一篇:初中數學教育教學研究論文

