<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

        2017年江蘇連云港中考數(shù)學(xué)練習(xí)真題(2)

        時間: 漫柔41 分享

          (2)請通過列表,描點,連線畫出這個函數(shù)的圖象:

          ①列表:

          x … ﹣8 ﹣4 ﹣3 ﹣2 ﹣1 ﹣

          1 2 3 4 8 …

          y …

          1

          0 ﹣2 ﹣6 10 6 4

          3

          …

          ②描點(在下面給出的直角坐標(biāo)系中補全表中對應(yīng)的各點);

          ③連線(將圖中描出的各點用平滑的曲線連接起來,得到函數(shù)的圖象).

          (3)觀察函數(shù)的圖象,回答下列問題:

          ①圖象與x軸有 1 個交點,所以對應(yīng)的方程2+ =0實數(shù)根是 x=﹣2 ;

          ②函數(shù)圖象的對稱性是 A .

          A、既是軸對稱圖形,又是中心對稱圖形

          B、只是軸對稱圖形,不是中心對稱圖形

          C、不是軸對稱圖形,而是中心對稱圖形

          D、既不是軸對稱圖形也不是中心對稱圖形

          (4)寫出函數(shù)y=2+ 與y= 的圖象之間有什么關(guān)系?(從形狀和位置方面說明)

          【考點】G4:反比例函數(shù)的性質(zhì);G2:反比例函數(shù)的圖象.

          【分析】(1)根據(jù)分式有意義的條件即可得到結(jié)論;

          (2)根據(jù)題意作出圖象即可;

          (3)①②根據(jù)圖象即可得到結(jié)論;

          (4)根據(jù)函數(shù)關(guān)系式即可得到結(jié)論.

          【解答】解:(1)自變量x的取值范圍:x≠0;

          故答案為:x≠0;

          (2)(2,4),(4,3)需要補上,所示;

          (3)①圖象與x軸有1個交點,所以對應(yīng)的方程2+ =0實數(shù)根是x=﹣2,

          ②A,

          故答案為:1,x=﹣2;A;

          (4)將函數(shù)y= 的圖象向上平移2個單位就可以得到函數(shù)y=2+ 的圖象.

          19.,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

          【考點】T9:解直角三角形的應(yīng)用﹣坡度坡角問題.

          【分析】過點C作CE⊥AB于E,過點B作BF⊥CD于F,在Rt△BFD中,分別求出DF、BF的長度,在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.

          【解答】解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,

          在Rt△BFD中,

          ∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,

          ∵BD=6,

          ∴DF=3,BF=3 ,

          ∵AB∥CD,CE⊥AB,BF⊥CD,

          ∴四邊形BFCE為矩形,

          ∴BF=CE=3 ,CF=BE=CD﹣DF=1,

          在Rt△ACE中,∠ACE=45°,

          ∴AE=CE=3 ,

          ∴AB=3 +1.

          答:鐵塔AB的高為(3 +1)m.

          20.,已知ED為⊙O的直徑且ED=4,點A(不與E、D重合)為⊙O上一個動點,線段AB經(jīng)過點E,且EA=EB,F(xiàn)為⊙O上一點,∠FEB=90°,BF的延長線交AD的延長線交于點C.

          (1)求證:△EFB≌△ADE;

          (2)當(dāng)點A在⊙O上移動時,直接回答四邊形FCDE的最大面積為多少.

          【考點】M5:圓周角定理;H7:二次函數(shù)的最值;KD:全等三角形的判定與性質(zhì).

          【分析】(1)連接FA,根據(jù)垂直的定義得到EF⊥AB,得到BF=AF,推出BF=ED,根據(jù)全等三角形的判定定理即可得到結(jié)論;

          (2)根據(jù)全等三角形的性質(zhì)得到∠B=∠AED,得到DE∥BC,推出四邊形形FCDE,得到E到BC的距離最大時,四邊形FCDE的面積最大,即點A到DE的距離最大,推出當(dāng)A為 的中點時,于是得到結(jié)論.

          【解答】解:(1)連接FA,

          ∵∠FEB=90°,

          ∴EF⊥AB,

          ∵BE=AE,

          ∴BF=AF,

          ∵∠FEA=∠FEB=90°,

          ∴AF是⊙O的直徑,

          ∴AF=DE,

          ∴BF=ED,

          在Rt△EFB與Rt△ADE中, ,

          ∴Rt△EFB≌Rt△ADE;

          (2)∵Rt△EFB≌Rt△ADE,

          ∴∠B=∠AED,

          ∴DE∥BC,

          ∵ED為⊙O的直徑,

          ∴AC⊥AB,

          ∵EF⊥AB,

          ∴EF∥CD,

          ∴四邊形形FCDE,

          ∴E到BC的距離最大時,四邊形FCDE的面積最大,

          即點A到DE的距離最大,

          ∴當(dāng)A為 的中點時,

          點A到DE的距離最大是2,

          ∴四邊形FCDE的最大面積=4×2=8.

          21.小張前往某精密儀器產(chǎn)應(yīng)聘,公司承諾工資待遇.進廠后小張發(fā)現(xiàn):加工1件A型零件和3件B型零件需5小時;加工2件A型零件和5件B型零件需9小時.

          工資待遇:每月工資至少3000元,每天工作8小時,每月工作25天,加工1件A型零件計酬16元,加工1件B型零件計酬12元,月工資=底薪+計件工資.

          (1)小張加工1件A型零件和1件B型零件各需要多少小時?

          (2)若公司規(guī)定:小張每月必須加工A、B兩種型號的零件,且加工B型的數(shù)量不大于A型零件數(shù)量的2倍,設(shè)小張每月加工A型零件a件,工資總額為W元,請你運用所學(xué)知識判斷該公司頒布執(zhí)行此規(guī)定后是否違背了工資待遇承諾?

          【考點】FH:一次函數(shù)的應(yīng)用;9A:二元一次方程組的應(yīng)用.

          【分析】(1)設(shè)小張加工1件A型零件需要x小時,加工1件B型零件需要y小時,根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果;

          (2)表示出小張每月加工的零件件數(shù),進而列出W與a的函數(shù),利用一次函數(shù)性質(zhì)確定出最大值,即可作出判斷.

          【解答】解:(1)設(shè)小張加工1件A型零件需要x小時,加工1件B型零件需要y小時,

          根據(jù)題意得: ,

          解得: ,

          則小張加工1件A型零件需要2小時,加工1件B型零件需要1小時;

          (2)由(1)可得小張每月加工A型零件a件時,還可以加工B型零件(8×25﹣2a)件,

          根據(jù)題意得:W=16a+12×(8×25﹣2a)+800=﹣8a+3200,

          ∵﹣8<0,

          ∴W隨a的增大而減小,

          當(dāng)a=50時,W最大值為2800,

          ∵2800<3000,

          ∴該公司執(zhí)行后違背了在工資待遇方面的承諾.

          22.已知,在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.

          (1)觀察猜想:1,當(dāng)點D在線段BC上時,①BC與CF的位置關(guān)系為: BC⊥CF ;②BC、CD、CF之間的數(shù)量關(guān)系為: CF=BC﹣CD .

          (2)數(shù)學(xué)思考:2,當(dāng)點D在線段CB的延長線上時,以上①②關(guān)系是否成立,請在后面的橫線上寫出正確的結(jié)論.①BC與CF的位置關(guān)系為: BC⊥CF ;②BC、CD、CF之間的數(shù)量關(guān)系為: CF=CD﹣BC .

          (3)3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GD,若已知AB=2 ,CD= BC,請求出DG的長(寫出求解過程).

          【考點】LO:四邊形綜合題.

          【分析】(1)①證出∠BAD=∠CAF,由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=45°,證出∠ACF+∠ACB=90°,即可得出結(jié)論;

          ②由全等三角形的性質(zhì)得出BD=CF,證出CF=BC﹣CD即可;

          (2)①證出∠BAD=∠CAF,由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=180°﹣45°=135°,證出∠ACB+∠FCB=135°,得出∠FCB=90°,即可得出結(jié)論;

          ②由全等三角形的性質(zhì)得出BD=CF,證出CF=CD﹣BC即可;

          (3)由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=45°,證出∠FCB=∠ACF+∠ACB=90°,得出CF⊥BC,在Rt△ABC中,由勾股定理得出AC=AB=2 ,在Rt△AGC中,得出CG= AC= ×2 =4,同理BC=4,CD= BC=1,在Rt△DCG中,由勾股定理即可求出DG的長.

          【解答】(1)證明:①∵∠BAC=90°,AB=AC,

          ∴∠ABC=∠ACB=45°,

          ∵四邊形ADEF是正方形,

          ∴AD=AF,∠DAF=90°,

          ∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,

          ∴∠BAD=∠CAF,

          在△BAD和△CAF中, ,

          ∴△BAD≌△CAF(SAS),

          ∴∠ACF=∠ABD=45°,

          ∴∠ACF+∠ACB=90°,

          ∴∠BCF=90°,

          ∴BC⊥CF,

          故答案為:BC⊥CF;

          ②由①△BAD≌△CAF,

          ∴BD=CF,

          ∵BD=BC﹣CD,

          ∴CF=BC﹣CD,

          故答案為:CF=BC﹣CD;

          (2)解:①成立,②不成立;理由如下:

          ①∵∠BAC=90°,AB=AC,

          ∴∠ABC=∠ACB=45°,

          ∵四邊形ADEF是正方形,

          ∴AD=AF,∠DAF=90°,

          ∵∠BAC=∠BAF+∠FAC=90°,∠DAF=∠BAF+∠DAB=90°,

          ∴∠BAD=∠CAF,

          在△BAD和△CAF中, ,

          ∴△BAD≌△CAF(SAS),

          ∴∠ACF=∠ABD=180°﹣45°=135°,

          ∴∠ACB+∠FCB=135°,

          ∴∠FCB=90°,

          ∴BC⊥CF,

          故答案為:BC⊥CF;

          ②由①△BAD≌△CAF,

          ∴BD=CF,

          ∵BD=CD﹣BC,

          ∴CF=CD﹣BC,

          故答案為:CF=CD﹣BC;

          (3)解:由題意得:∠BAC=∠FAD=90°,

          ∴∠BAD=∠CAF,

          在△BAD和△CAF中, ,

          ∴△BAD≌△CAF(SAS),

          ∴∠ACF=∠ABD=45°,

          ∴∠FCB=∠ACF+∠ACB=45°+45°=90°,

          ∴CF⊥BC,

          在Rt△ABC中,AC=AB=2 ,

          在Rt△AGC中,∵∠ACF=45°,

          ∴CG= AC= ×2 =4,

          同理BC=4,

          CD= BC= ×4=1,

          ∴在Rt△DCG中,DG= = = .

          23.,在平面直角坐標(biāo)系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)拋物線y= x2+bx﹣2的圖象過C點,交y軸于點D.【來源:21•世紀(jì)•教育•網(wǎng)】

          (1)在后面的橫線上直接寫出點D的坐標(biāo)及b的值: (0,﹣2) ,b=   ;

          (2)平移該拋物線的對稱軸所在直線l,設(shè)l與x軸交于點G(x,0),當(dāng)OG等于多少時,恰好將△ABC的面積分為相等的兩部分?

          (3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,直接寫出P點坐標(biāo);若不存在,說明理由.

          【考點】HF:二次函數(shù)綜合題.

          【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得D點坐標(biāo);

          (2)根據(jù)勾股定理,可得AB的長,根據(jù)三角形的面積,可得△ABC的面積,根據(jù)待定系數(shù)法,可得AC,BC的解析式,根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得EF的長,根據(jù)△EFC的面積與△ABC的關(guān)系,可得關(guān)于x的方程,根據(jù)解方程,可得答案;

          (3)根據(jù)一個角的兩邊平行于另一個角的兩邊,可得這兩個角相等,根據(jù)全等三角形的判定與性質(zhì),可得PN,AN,根據(jù)點的坐標(biāo),可得P點,根據(jù)點的坐標(biāo)滿足函數(shù)解析式,可得點在函數(shù)圖象上.

          【解答】解:(1)將C點坐標(biāo)代入解析式,得

          ×32+3b﹣2=1,

          解得b= ,

          函數(shù)解析式y(tǒng)= x2+ x﹣2,

          當(dāng)x=0時,y=﹣2,即D(0,﹣2),

          故答案為:(0,﹣2), ;

          (2)在Rt△A0B中,OA=1,OB=2,由勾股定理,得

          AB2=OA2+OB2=5,

          ∴S△ABC= AB2= ,

          設(shè)l與AC、BC分別交于E,F(xiàn),直線BC所在的直線解析式為y=kx+b,

          將B(0,2),C(3,1)代入函數(shù)解析式,得

          ,

          解得 ,

          直線BC的解析式為y=﹣ x+2,

          同理直線AC的解析式為y= x﹣ ,

          ∴點E,F(xiàn)的坐標(biāo)為E(x, x﹣ ),F(xiàn)(x,﹣ x+2),

          EF=(﹣ x+2)﹣( x﹣ )= ﹣ x,

          過C作CH⊥x軸于H點,

          ,

          在△CEF中,EF邊上的高h(yuǎn)=OH﹣x=3﹣x,

          由題意可知S△CEF= S△ABC= EF•h,

          即 ( ﹣ x)(3﹣x)= × ,

          解得x1=3﹣ ,x2=3+ (不符合題意,舍),

          當(dāng)OG=3﹣ 時,恰好將△ABC的面積分為相等的兩部分;

          (3)拋物線上存在點P,使四邊形PACB為平行四邊形,

          2 ,

          過C作CM⊥y軸于點M,則CM=3,OM=1,BM=OB﹣OM=1.

          過點P作PA∥BC,且AP=BC,連接BP,則四邊形PABC是平行四邊形,

          ∵ ,

          ∴∠PAN=∠BCM.

          過點P作PN⊥x軸于N,

          在△APN和△CBM中,

          ∴△PAN≌△BCM,

          ∴PN=BM=1,AN=CM=3,

          ∴ON=AN﹣OA=2,

          ∴P點坐標(biāo)為(﹣2,1).

          拋物線解析式為:y= x2+ x﹣2,當(dāng)x=﹣2時,y=1,即點P在拋物線上.

          ∴存在符合條件的點P,點P的坐標(biāo)為(﹣2,1).

        猜你喜歡:

        1.2017年中考數(shù)學(xué)試卷含答案

        2.2017中考數(shù)學(xué)基本定理匯總

        3.2017中考數(shù)學(xué)常見的統(tǒng)計圖表練習(xí)題及答案

        4.2017中考數(shù)學(xué)練習(xí)題附答案

        5.2017中考數(shù)學(xué)試題及答案

        2017年江蘇連云港中考數(shù)學(xué)練習(xí)真題(2)

        (2)請通過列表,描點,連線畫出這個函數(shù)的圖象: ①列表: x ﹣8 ﹣4 ﹣3 ﹣2 ﹣1 ﹣ 1 2 3 4 8 y 1 0 ﹣2 ﹣6 10 6 4 3 ②描點(在下面給出的直角坐標(biāo)系中補全表中
        推薦度:
        點擊下載文檔文檔為doc格式

        精選文章

        • 2017年嘉興數(shù)學(xué)中考模擬真題及答案
          2017年嘉興數(shù)學(xué)中考模擬真題及答案

          考生想在中考數(shù)學(xué)中取得突破就要多做數(shù)學(xué)中考模擬考題,為了幫助考生們掌握,以下是小編精心整理的2017年嘉興數(shù)學(xué)中考模擬考題及答案,希望能幫到大

        • 2017年濟寧中考數(shù)學(xué)練習(xí)試題及答案
          2017年濟寧中考數(shù)學(xué)練習(xí)試題及答案

          中考想取得好成績就需要多做中考數(shù)學(xué)練習(xí)真題,學(xué)生備考的時候掌握中考數(shù)學(xué)練習(xí)真題自然能考得好。以下是小編精心整理的2017年濟寧中考數(shù)學(xué)練習(xí)真題

        • 2017年濟南數(shù)學(xué)中考模擬真題及答案
          2017年濟南數(shù)學(xué)中考模擬真題及答案

          初三的學(xué)生備考的j階段要多做數(shù)學(xué)中考模擬試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年濟南數(shù)學(xué)中考模擬試題及答案,

        • 2017年吉林省中考數(shù)學(xué)練習(xí)試卷及答案
          2017年吉林省中考數(shù)學(xué)練習(xí)試卷及答案

          學(xué)生想在中考得到好成績備考的時候就要多做中考數(shù)學(xué)練習(xí)試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年吉林省中考數(shù)學(xué)練

        33172 主站蜘蛛池模板: 中文字幕无码av不卡一区| 男人猛躁进女人免费播放| 无码中出人妻中文字幕av| 91亚洲国产成人精品性色| 欧洲精品色在线观看| 久久精品国产午夜福利伦理| 96精品国产高清在线看入口| 一区二区三区四区激情视频| 狠狠躁夜夜躁人人爽天天bl| 成人国产精品免费网站| 国产日韩精品中文字幕| 亚洲黄色高清| 蜜臀久久综合一本av| 亚洲第一香蕉视频啪啪爽| 2022最新国产在线不卡a| 日韩精品久久不卡中文字幕| 三级网站视频在在线播放| 亚洲另类激情专区小说图片 | 亚洲大成色www永久网站动图| 国产精品无码专区在线观看不卡| 97久久精品人人澡人人爽| 国产AV午夜精品一区二区三区| 国产精品白浆无码流出在线看| 国语精品国内自产视频| 大香j蕉75久久精品免费8| 久久夜色精品国产爽爽| 亚洲线精品一区二区三区| 日韩精品欧美高清区| 国产成人免费无码AV| 欧美日韩精品免费一区二区三区| 亚洲欧美一区二区成人片| 国产精品理论片在线观看| 欧洲亚洲国内老熟女超碰| 中文字幕精品人妻丝袜| 免费国产一级特黄aa大片在线| 爱啪啪av导航| 又黄又刺激又黄又舒服| 亚洲高清国产自产拍av| 亚洲精品三区四区成人少| 国内精品无码一区二区三区 | 欧美做受视频播放|