<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦>學習方法>初中學習方法>初三學習方法>九年級數學>

        九年級數學上學期期末試卷

        時間: 鄭曉823 分享

          九年級數學的學習需要的是大量的做題,大家要準備好期末試卷來練習,下面是學習啦小編為大家帶來的關于九年級數學上學期期末試卷,希望會給大家帶來幫助。

          九年級數學上學期期末試卷:

          一、選擇題(每小題3分,共36分)

          1.下列事件是必然事件的為(  )

          A.明天太陽從西方升起

          B.擲一枚硬幣,正面朝上

          C.打開電視機,正在播放“夏津新聞”

          D.任意一個三角形,它的內角和等于180

          【考點】隨機事件.

          【分析】根據必然事件、不可能事件、隨機事件的概念可區別各類事件.

          【解答】解:A、明天太陽從西方升起是不可能事件,故A錯誤;

          B、擲一枚硬幣,正面朝上是隨機事件,故B錯誤;

          C、打開電視機,正在播放“夏津新聞”是隨機事件,故C錯誤;

          D、任意一個三角形,它的內角和等于180是必然事件,故D正確;

          故選:D.

          【點評】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.

          2.一元二次方程x2﹣2x=0的根是(  )

          A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2

          【考點】解一元二次方程-因式分解法.

          【分析】先分解因式,即可得出兩個一元一次方程,求出方程的解即可.

          【解答】解:x2﹣2x=0,

          x(x﹣2)=0,

          x=0,x﹣2=0,

          x1=0,x2=2,

          故選D.

          【點評】本題考查了解一元二次方程的應用,解此題的關鍵是能把一元二次方程轉化成一元一次方程,難度適中.

          3.二次函數y= (x﹣1)2+2的圖象可由y= x2的圖象(  )

          A.向左平移1個單位,再向下平移2個單位得到

          B.向左平移1個單位,再向上平移2個單位得到

          C.向右平移1個單位,再向下平移2個單位得到

          D.向右平移1個單位,再向上平移2個單位得到

          【考點】二次函數圖象與幾何變換.

          【分析】按照“左加右減,上加下減”的規律.

          【解答】解:y= x2的圖象向右平移1個單位,再向上平移2個單位得到二次函數y= (x﹣1)2+2的圖象.

          故選D.

          【點評】考查了拋物線的平移以及拋物線解析式的變化規律:左加右減,上加下減.

          4.在△ABC中,DE∥BC,AD=6,DB=3,AE=4,則EC的長為(  )

          A.1 B.2 C.3 D.4

          【考點】平行線分線段成比例.

          【分析】根據平行線分線段成比例可得 ,代入計算即可解答.

          【解答】解:∵DE∥BC,

          ∴ ,

          即 ,

          解得:EC=2,

          故選:B.

          【點評】本題主要考查平行線分線段成比例,掌握平行線分線段所得線段對應成比例是解題的關鍵.

          5.在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是(  )

          A.∠C= ∠BOD B.AC=AB C.∠C=∠B D.∠A=∠BOD

          【考點】垂徑定理.

          【分析】根據垂徑定理,可得BE與AE的關系,根據全等三角形的判定與性質,可得∠AOD=∠BOD,根據圓周角定理,可得∠C= ∠AOD,再根據等量代換,可得答案.

          【解答】解:連接AO,如圖:

          由垂徑定理,得

          AE=BE.

          在△AEO和△BEO中,

          ,

          ∴△AEO≌△BEO(SAS),

          ∴∠AOD=∠BOD.

          由圓周角定理,得

          ∠C= ∠AOD.

          由等量代換,得

          ∠C= ∠BOD,故A正確.

          故選:A.

          【點評】本題考查了垂徑定理,利用垂徑定理得出BE與AE的關系是解題關鍵,又利用了全等三角形的判定與性質,圓周角定理.

          6.點P是▱ABCD邊AB上的一點,射線CP交DA的延長線于點E,則圖中相似的三角形有(  )

          A.0對 B.1對 C.2對 D.3對

          【考點】相似三角形的判定;平行四邊形的性質.

          【分析】利用相似三角形的判定方法以及平行四邊形的性質得出即可.

          【解答】解:∵四邊形ABCD是平行四邊形,

          ∴AB∥DC,AD∥BC,

          ∴△EAP∽△EDC,△EAP∽△CPB,

          ∴△EDC∽△CBP,

          故有3對相似三角形.

          故選:D.

          【點評】此題主要考查了相似三角形的判定以及平行四邊形的性質,熟練掌握相似三角形的判定方法是解題關鍵.

          7.二次函數y=ax2+bx+c的圖象如圖所示,則下列關系式錯誤的是(  )

          A.a<0 B.a+b+c<0 C.b2﹣4ac>0 D.b>0

          【考點】二次函數圖象與系數的關系.

          【分析】由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

          【解答】解:A、拋物線開口方向向下,則a<0,故本選項錯誤;

          B、∵當x=1時,y>0,

          ∴a+b+c>0,故本選項正確;

          C、拋物線與x軸有2個交點,則b2﹣4ac>0,故本選項錯誤;

          D、對稱軸在y軸的右側,則a、b異號,即b>0,故本選項錯誤.

          故選:B.

          【點評】主要考查圖象與二次函數系數之間的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.

          8.線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的 后得到線段CD,則端點C和D的坐標分別為(  )

          A.(2,2),(3,2) B.(2,4),(3,1) C.(2,2),(3,1) D.(3,1),(2,2)

          【考點】位似變換;坐標與圖形性質.

          【專題】壓軸題.

          【分析】直接利用位似圖形的性質得出對應點坐標乘以 得出即可.

          【解答】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),

          以原點O為位似中心,在第一象限內將線段AB縮小為原來的 后得到線段CD,

          ∴端點的坐標為:(2,2),(3,1).

          故選:C.

          【點評】此題主要考查了位似變換,正確把握位似圖形的性質是解題關鍵.

          9.若在“正三角形、平行四邊形、菱形、正五邊形、正六邊形”這五種圖形中隨機抽取一種圖形,則抽到的圖形屬于中心對稱圖形的概率是(  )

          A. B. C. D.

          【考點】概率公式;中心對稱圖形.

          【專題】計算題.

          【分析】根據中心對稱圖形的定義得到平行四邊形、菱形和正六邊形是中心對稱圖形,于是利用概率公式可計算出抽到的圖形屬于中心對稱圖形的概率.

          【解答】解:這五種圖形中,平行四邊形、菱形和正六邊形是中心對稱圖形,

          所以這五種圖形中隨機抽取一種圖形,則抽到的圖形屬于中心對稱圖形的概率= .

          故選C.

          【點評】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現的結果數除以所有可能出現的結果數.也考查了中心對稱圖形.

          10.AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則DE的長為(  )

          A.2.2 B.2.5 C.2 D.1.8

          【考點】相似三角形的判定與性質;圓周角定理.

          【分析】連接BD、CD,由勾股定理先求出BD的長,再利用△ABD∽△BED,得出 = ,可解得DE的長.

          【解答】解:如圖1,連接BD、CD,

          ,

          ∵AB為⊙O的直徑,

          ∴∠ADB=90°,

          ∴BD= = = ,

          ∵弦AD平分∠BAC,

          ∴CD=BD= ,

          ∴∠CBD=∠DAB,

          在△ABD和△BED中,

          ∴△ABD∽△BED,

          ∴ ,即 ,

          解得DE= .

          故選A.

          【點評】此題主要考查了三角形相似的判定和性質及圓周角定理,解答此題的關鍵是得出△ABD∽△BED.

          11.若函數y=mx2+(m+2)x+ m+1的圖象與x軸只有一個交點,那么m的值為(  )

          A.0 B.0或2 C.2或﹣2 D.0,2或﹣2

          【考點】拋物線與x軸的交點.

          【專題】分類討論.

          【分析】分為兩種情況:函數是二次函數,函數是一次函數,求出即可.

          【解答】解:分為兩種情況:

          ①當函數是二次函數時,

          ∵函數y=mx2+(m+2)x+ m+1的圖象與x軸只有一個交點,

          ∴△=(m+2)2﹣4m( m+1)=0且m≠0,

          解得:m=±2,

          ②當函數是一次函數時,m=0,

          此時函數解析式是y=2x+1,和x軸只有一個交點,

          故選:D.

          【點評】本題考查了拋物線與x軸的交點,根的判別式的應用,用了分類討論思想,題目比較好,但是也比較容易出錯.

          12.將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經過第2016次操作后得到的折痕D2015E2015到BC的距離記為h2016,到BC的距離記為h2016.若h1=1,則h2016的值為(  )

          A. B.1﹣ C. D.2﹣

          【考點】翻折變換(折疊問題).

          【專題】規律型.

          【分析】根據中點的性質及折疊的性質可得DA=DA'=DB,從而可得∠ADA'=2∠B,結合折疊的性質可得∠ADA'=2∠ADE,可得∠ADE=∠B,繼而判斷DE∥BC,得出DE是△ABC的中位線,證得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣ ,h3=2﹣ × =2﹣ ,于是經過第n次操作后得到的折痕Dn﹣1En﹣1到BC的距離hn=2﹣ ,求得結果h2016=2﹣ .

          【解答】解:連接AA1.

          由折疊的性質可得:AA1⊥DE,DA=DA1,

          又∵D是AB中點,

          ∴DA=DB,

          ∴DB=DA1,

          ∴∠BA1D=∠B,

          ∴∠ADA1=2∠B,

          又∵∠ADA1=2∠ADE,

          ∴∠ADE=∠B,

          ∴DE∥BC,

          ∴AA1⊥BC,

          ∴AA1=2,

          ∴h1=2﹣1=1,

          同理,h2=2﹣ ,h3=2﹣ × =2﹣

          …

          ∴經過第n次操作后得到的折痕Dn﹣1En﹣1到BC的距離hn=2﹣ .

          ∴h2016=2﹣ .

          故選:D.

          【點評】本題考查了相似三角形的判定和性質,三角形中位線的性質,平行線等分線段定理,找出規律是解題的關鍵.

          二、填空題(每小題4分,共20分)

          13.方程(x+2)(x﹣3)=x+2的解是 x1=﹣2,x2=4 .

          【考點】解一元二次方程-因式分解法.

          【分析】先移項,再提取公因式,求出x的值即可.

          【解答】解:原式可化為(x+2)(x﹣3)﹣(x+2)=0,

          提取公因式得,(x+2)(x﹣4)=0,

          故x+2=0或x﹣4=0,解得x1=﹣2,x2=4.

          故答案為:x1=﹣2,x2=4.

          【點評】本題考查的是解一元二次方程,熟知因式分解法解一元二次方程的一般步驟是解答此題的關鍵.

          14.二次函數y=x2﹣2x+3的最小值是 2 .

          【考點】二次函數的最值.

          【分析】把函數的解析式化為頂點式的形式即可解答.

          【解答】解:∵二次函數y=x2﹣2x+3可化為y=(x﹣1)2+2的形式,

          ∴二次函數y=x2﹣2x+3的最小值是2.

          【點評】本題由于函數的二次項系數較小,所以可把函數解析式化為頂點式即y=a(x+h)2+k的形式解答.

          15.△ABC與△DEF位似,位似中心為點O,且△ABC的面積等于△DEF面積的 ,則AB:DE= 2:3 .

          【考點】位似變換.

          【分析】由△ABC經過位似變換得到△DEF,點O是位似中心,根據位似圖形的性質,即可得AB∥DE,即可求得△ABC的面積:△DEF面積= ,得到AB:DE═2:3.

          【解答】解:∵△ABC與△DEF位似,位似中心為點O,

          ∴△ABC∽△DEF,

          ∴△ABC的面積:△DEF面積=( )2= ,

          ∴AB:DE=2:3,

          故答案為:2:3.

          【點評】此題考查了位似圖形的性質.注意掌握位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.

          16.A,B,C三點在⊙O上,且AB是⊙O的直徑,半徑OD⊥AC,垂足為F,若∠A=30°,OF=3,則BC= 6 .

          【考點】三角形中位線定理;垂徑定理;圓周角定理;特殊角的三角函數值.

          【分析】根據垂徑定理和30°的角易得圓的半徑為2OF,即可求得直徑;易得∠C為90°,那么BC等于直徑AB的一半.

          【解答】解:∵OD⊥AC,垂足為F

          ∴△AFO是直角三角形,∠A=30°

          ∴OA=2OF=2×3=6

          ∴AB=2×6=12

          又∵AB是圓的直徑,∠ACB為圓周角

          ∴∠ACB=90°

          在Rt△ABC中,A=30°

          ∴BC= AB= ×12=6.

          【點評】本題涉及面較廣,涉及垂徑定理以及特殊角的三角函數.

          17.在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經過點C,則圖中陰影部分的面積為  ﹣  .

          【考點】扇形面積的計算.

          【分析】連接OC,作OM⊥BC,ON⊥AC,證明△OMG≌△ONH,則S四邊形OGCH=S四邊形OMCN,求得扇形FOE的面積,則陰影部分的面積即可求得.

          【解答】解:連接OC,作OM⊥BC,ON⊥AC.

          ∵CA=CB,∠ACB=90°,點O為AB的中點,

          ∴OC= AB=1,四邊形OMCN是正方形,OM= .

          則扇形FOE的面積是: = .

          ∵OA=OB,∠AOB=90°,點D為AB的中點,

          ∴OC平分∠BCA,

          又∵OM⊥BC,ON⊥AC,

          ∴OM=ON,

          ∵∠GOH=∠MON=90°,

          ∴∠GOM=∠HON,

          則在△OMG和△ONH中,

          ,

          ∴△OMG≌△ONH(AAS),

          ∴S四邊形OGCH=S四邊形OMCN=( )2= .

          則陰影部分的面積是: ﹣ .

          故答案為: ﹣ .

          【點評】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△OMG≌△ONH,得到S四邊形OGCH=S四邊形OMCN是解題的關鍵.

          三、解答題(共64分)

          18.閱讀材料:如果是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么x1+x2=﹣ ,x1x2= ,這就是著名的韋達定理.現在我們利用韋達定理解決問題:

          已知m與n是方程2x2﹣6x+3=0的兩根

          (1)填空:m+n= 3 ,m•n=   ;

          (2)計算 與m2+n2的值.

          【考點】根與系數的關系.

          【專題】計算題.

          【分析】(1)直接根據根與系數的關系求解;

          (2)先利用代數式變形得到) = ,m2+n2=(m+n)2﹣2mn,然后利用整體代入的方法計算.

          【解答】解:(1)m+n=﹣ =3,mn= ;

          故答案為3, ;

          (2) = = =2;

          m2+n2=(m+n)2﹣2mn=32﹣2× =6.

          【點評】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=﹣ ,x1x2= .

          19.為了參加中考體育測試,甲、乙、丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳球三次.

          (1)請利用樹狀圖列舉出三次傳球的所有可能情況;

          (2)求三次傳球后,球回到甲腳下的概率;

          (3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

          【考點】列表法與樹狀圖法.

          【分析】(1)畫出樹狀圖,

          (2)根據(1)的樹形圖,利用概率公式列式進行計算即可得解;

          (3)分別求出球回到甲腳下的概率和傳到乙腳下的概率,比較大小即可.

          【解答】解:(1)根據題意畫出樹狀圖如下:

          由樹形圖可知三次傳球有8種等可能結果;

          (2)由(1)可知三次傳球后,球回到甲腳下的概率= ;

          (3)由(1)可知球回到甲腳下的概率= ,傳到乙腳下的概率= ,

          所以球回到乙腳下的概率大.

          【點評】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.

          20.據某市車管部門統計,2013年底全市汽車擁有量為150萬輛,而截至到2015年底,全市的汽車擁有量已達216萬輛,假定汽車擁有量年平均增長率保持不變.

          (1)求年平均增長率;

          (2)如果不加控制,該市2017年底汽車擁有量將達多少萬輛?

          【考點】一元二次方程的應用.

          【分析】(1)假設出平均增長率為x,可以得出2013年該市汽車擁有量為150(1+x),2015年為150(1+x)(1+x)=216,即150(1+x)2=216,進而求出具體的值;

          (2)結合上面的數據2017應該在2015年的基礎上增長,而且增長率相同,同理,即為216(1+20%)2.

          【解答】解:設該市汽車擁有量的年平均增長率為x.

          根據題意,得150(1+x)2=216.

          解得:x=0.2或x=﹣2.2(不合題意,舍去).

          ∴年平均增長率為20%.

          (2)216(1+20%)2=311.04(萬輛).

          答:如果不加控制,該市2017年底汽車擁有量將達311.04萬輛.

          【點評】此題主要考查了一元二次方程的應用,以及增長率問題,正確表示出每一年的擁有汽車輛數,是解決問題的關鍵.

          21.在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.

          (1)求證:DF⊥AC;

          (2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

          【考點】切線的性質;扇形面積的計算.

          【分析】(1)連接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代換得∠ODB=∠ACB,利用平行線的判定得OD∥AC,由切線的性質得DF⊥OD,得出結論;

          (2)連接OE,利用(1)的結論得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面積公式和三角形的面積公式得出結論.

          【解答】(1)證明:連接OD,

          ∵OB=OD,

          ∴∠ABC=∠ODB,

          ∵AB=AC,

          ∴∠ABC=∠ACB,

          ∴∠ODB=∠ACB,

          ∴OD∥AC,

          ∵DF是⊙O的切線,

          ∴DF⊥OD,

          ∴DF⊥AC.

          (2)解:連接OE,

          ∵DF⊥AC,∠CDF=22.5°,

          ∴∠ABC=∠ACB=67.5°,

          ∴∠BAC=45°,

          ∵OA=OE,

          ∴∠AOE=90°,

          ∵⊙O的半徑為4,

          ∴S扇形AOE=4π,S△AOE=8 ,

          ∴S陰影=4π﹣8.

          【點評】本題主要考查了切線的性質,扇形的面積與三角形的面積公式,圓周角定理等,作出適當的輔助線,利用切線性質和圓周角定理,數形結合是解答此題的關鍵.

          22.某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統計銷售情況發現,當這種面包的單價定為7角時,每天賣出160個.在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個.考慮了所有因素后該零售店每個面包的成本是5角.

          設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).

          (1)用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;

          (2)求y與x之間的函數關系式;

          (3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

          【考點】二次函數的應用.

          【專題】壓軸題.

          【分析】(1)設每個面包的利潤為(x﹣5)角.

          (2)依題意可知y與x的函數關系式.

          (3)把函數關系式用配方法可解出x=10時y有最大值.

          【解答】解:(1)每個面包的利潤為(x﹣5)角

          賣出的面包個數為[160﹣(x﹣7)×20])

          (2)y=(x﹣5)=﹣20x2+400x﹣1500

          即y=﹣20x2+400x﹣1500

          (3)y=﹣20x2+400x﹣1500=﹣20(x﹣10)2+500

          ∴當x=10時,y的最大值為500.

          ∴當每個面包單價定為10角時,該零售店每天獲得的利潤最大,最大利潤為500角.

          【點評】求二次函數的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.本題難度一般.

          23.在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.

          (1)求證:AC•CD=CP•BP;

          (2)若AB=10,BC=12,當PD∥AB時,求BP的長.

          【考點】相似三角形的判定與性質.

          【分析】(1)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到 = ,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;

          (2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質即可求出BP的長.

          【解答】解:(1)∵AB=AC,∴∠B=∠C.

          ∵∠APD=∠B,∴∠APD=∠B=∠C.

          ∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,

          ∴∠BAP=∠DPC,

          ∴△ABP∽△PCD,

          ∴ = ,

          ∴AB•CD=CP•BP.

          ∵AB=AC,

          ∴AC•CD=CP•BP;

          (2)∵PD∥AB,∴∠APD=∠BAP.

          ∵∠APD=∠C,∴∠BAP=∠C.

          ∵∠B=∠B,

          ∴△BAP∽△BCA,

          ∴ = .

          ∵AB=10,BC=12,

          ∴ = ,

          ∴BP= .

          【點評】本題主要考查了相似三角形的判定與性質、等腰三角形的性質、平行線的性質、三角形外角的性質等知識,把證明AC•CD=CP•BP轉化為證明AB•CD=CP•BP是解決第(1)小題的關鍵,證到∠BAP=∠C進而得到△BAP∽△BCA是解決第(2)小題的關鍵.

          24.二次函數y=ax2+bx﹣3的圖象與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C,該拋物線的頂點為M.

          (1)求該拋物線的解析式及點M的坐標;

          (2)判斷△BCM的形狀,并說明理由;

          (3)探究坐標軸上是否存在點P,使得以點P、A、C為頂點的三角形與△BCM相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

          【考點】二次函數綜合題.

          【分析】(1)已知拋物線圖象上的三點坐標,可用待定系數法求出該拋物線的解析式;

          (2)根據B、C、M的坐標,可求得△BCM三邊的長,然后判斷這三條邊的長是否符合勾股定理即可;

          (3)假設存在符合條件的P點;首先連接AC,根據A、C的坐標及(2)題所得△BDC三邊的比例關系,即可判斷出點O符合P點的要求,因此以P、A、C為頂點的三角形也必與△COA相似,那么分別過A、C作線段AC的垂線,這兩條垂線與坐標軸的交點也符合點P點要求,可根據相似三角形的性質(或射影定理)求得OP的長,也就得到了點P的坐標.

          【解答】解:(1)∵二次函數y=ax2+bx﹣3的圖象與x軸交于A(﹣1,0),B(3,0)兩點,

          ∴ ,

          解得: ,

          則拋物線解析式為y=x2﹣2x﹣3;

          (2)△BCM為直角三角形,理由為:

          對于拋物線解析式y=x2﹣2x﹣3=(x﹣1)2﹣4,即頂點M坐標為(1,﹣4),

          令x=0,得到y=﹣3,即C(0,﹣3),

          根據勾股定理得:BC=3 ,BM=2 ,CM= ,

          ∵BM2=BC2+CM2,

          ∴△BCM為直角三角形;

          (3)若∠APC=90°,即P點和O點重合,如圖1,

          連接AC,

          ∵∠AOC=∠MCB=90°,且 = ,

          ∴Rt△AOC∽Rt△MCB,

          ∴此時P點坐標為(0,0).

          若P點在y軸上,則∠PAC=90°,如圖2,過A作AP1⊥AC交y軸正半軸于P1,

          ∵Rt△CAP1∽Rt△COA∽Rt△BCM,

          ∴ = ,

          即 = ,

          ∴點P1(0, ).

          若P點在x軸上,則∠PCA=90°,如圖3,過C作CP2⊥AC交x軸正半軸于P2,

          ∵Rt△P2CA∽Rt△COA∽Rt△BCM,

          ∴ = ,

          即 = ,AP2=10,

          ∴點P2(9,0).

          ∴符合條件的點有三個:O(0,0),P1(0, ),P2(9,0).

          【點評】本題是二次函數的綜合題,涉及到二次函數解析式的確定、勾股定理、直角三角形的判定、相似三角形的判定和性質等知識,(3)題中能夠發現點O是符合要求的P點,是解決此題的突破口.


        看過九年級數學上學期期末試卷的還看了:

        1.九年級數學上冊期末考試卷

        2.九年級數學上冊期末試題

        3.人教版九年級上學期期末數學試卷

        4.九年級數學上冊期末考試題

        5.江蘇省九年級上學期期末數學試卷

        九年級數學上學期期末試卷

        九年級數學的學習需要的是大量的做題,大家要準備好期末試卷來練習,下面是學習啦小編為大家帶來的關于九年級數學上學期期末試卷,希望會給大家帶來幫助。 九年級數學上學期期末試卷: 一、選擇題(每小題3分,共36分) 1.下列事件是必然
        推薦度:
        點擊下載文檔文檔為doc格式
        1162525 主站蜘蛛池模板: 午夜免费视频国产在线| 亚洲乱熟女一区二区三区| 不卡av电影在线| 亚洲精品一区二区三区小| 亚洲另类激情专区小说婷婷久| 亚洲三级香港三级久久| 福利一区二区在线视频| jizzjizz欧美69巨大| 亚洲综合在线亚洲优优色| 丝袜人妻一区二区三区网站| 在线日韩一区二区| 日韩国产欧美精品在线| 少妇精品无码一区二区免费视频| 国产99视频精品免视看9| 亚洲精品一品二品av| 国99久9在线 | 免费| 视频一区二区三区国产在线| 中文字幕亚洲综合小综合| 亚洲午夜久久久影院伊人| 亚洲综合av男人的天堂| 秋霞在线观看秋| 尹人香蕉久久99天天拍| 午夜色无码大片在线观看免费| 亚洲AV无码久久精品日韩| 欧美XXXX黑人又粗又长| a级黄色毛片免费播放视频| 天天做天天爱夜夜爽导航| 国产激情艳情在线看视频| 亚洲精品无码久久一线| 亚洲AV日韩AV一区二区三曲| 亚洲中文字幕精品无人区| 亚洲天堂视频在线观看| 国产成人午夜精品永久免费| 乱60一70归性欧老妇| 午夜激情福利在线免费看| 97精品伊人久久久大香线蕉| 欧美日本一区二区视频在线观看| 无码国模国产在线观看免费| 一道本AV免费不卡播放| 欧美人与动欧交视频| 亚洲国产日韩在线成人蜜芽|