<em id="0a85b"><option id="0a85b"></option></em>

<abbr id="0a85b"></abbr>

      <nobr id="0a85b"></nobr>
        <tr id="0a85b"></tr>
        9久久伊人精品综合,亚洲一区精品视频在线,成 人免费va视频,国产一区二区三区黄网,99国产精品永久免费视频,亚洲毛片多多影院,精品久久久无码人妻中文字幕,无码国产欧美一区二区三区不卡
        學習啦——考試網(wǎng)>學歷類考試>中考頻道>中考科目>中考數(shù)學>

        2017瀘州中考數(shù)學練習試卷(2)

        時間: 漫柔41 分享

          2017瀘州中考數(shù)學練習試題答案

          一、選擇題(本大題共8小題,每小題3分,共24分)

          1.比﹣1大2的數(shù)是(  )

          A.﹣3 B.﹣2 C.1 D.2

          【考點】有理數(shù)的加法.

          【分析】根據(jù)題意可得:比﹣1大2的數(shù)是﹣1+2=1.

          【解答】解:﹣1+2=1.

          故選C.

          2.每年的6月14日,是世界獻血日,據(jù)統(tǒng)計,某市義務獻血達421000人,421000這個數(shù)用科學記數(shù)法表示為(  )

          A.4.21×105 B.42.1×104 C.4.21×10﹣5 D.0.421×106

          【考點】科學記數(shù)法—表示較大的數(shù).

          【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).

          【解答】解:421 000=4.21×105,

          故選:A.

          3.不等式組 中的兩個不等式的解集在同一個數(shù)軸上表示正確的是(  )

          A. B. C. D.

          【考點】解一元一次不等式組;在數(shù)軸上表示不等式的解集.

          【分析】分別求出各不等式的解集,再求出其公共解集即可.

          【解答】解: ,由①得,x≥﹣1,

          由②得,x<2,

          故不等式組的解集為:﹣1≤x<2.

          在數(shù)軸上表示為: .

          故選D.

          4.一元二次方程x2+2x+2=0的根的情況是(  )

          A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

          C.沒有實數(shù)根 D.只有一個實數(shù)根

          【考點】根的判別式.

          【分析】計算判別式的值,然后利用判別式的意義判斷方程根的情況.

          【解答】解:△=22﹣4×2=﹣4<0,

          所以方程沒有實數(shù)解.

          故選C.

          5.由6個完全相同的小正方體組成的立體圖形如圖所示,則在以下視圖中,與其它三個形狀都不同的是(  )

          A.主視圖 B.俯視圖 C.左視圖 D.右視圖

          【考點】簡單組合體的三視圖.

          【分析】主視圖、左視圖、俯視圖、右視圖是分別從物體正面、左面、上面、右面看所得到的圖形,選出即可.

          【解答】解:主視圖、左視圖、右視圖都為:

          俯視圖為: ,

          故選B.

          6.如圖,AB為⊙O的切線,A為切點,BO的延長線交⊙O于點C,∠OAC=35°,則∠B的度數(shù)是(  )

          A.15° B.20° C.25° D.35°

          【考點】切線的性質.

          【分析】根據(jù)切線的性質得∠BAO=90°,再利用等腰三角形的性質得∠C=∠OAC=35°,然后根據(jù)三角形內角和計算∠B的度數(shù).

          【解答】解:∵AB為⊙O的切線,

          ∴OA⊥AB,

          ∴∠BAO=90°,

          ∵OA=OC,

          ∴∠C=∠OAC=35°,

          ∴∠B=180°﹣∠C﹣∠BAC=180°﹣35°﹣35°﹣90°=20°.

          故選B.

          7.如圖,點P在反比例函數(shù)y= 的圖象上,PA⊥x軸于點A,PB⊥y軸于點B,且△APB的面積為2,則k等于(  )

          A.﹣4 B.﹣2 C.2 D.4

          【考點】反比例函數(shù)系數(shù)k的幾何意義.

          【分析】由反比例函數(shù)系數(shù)k的幾何意義結合△APB的面積為2即可得出k=±4,再根據(jù)反比例函數(shù)在第二象限有圖象即可得出k=﹣4,此題得解.

          【解答】解:∵點P在反比例函數(shù)y= 的圖象上,PA⊥x軸于點A,PB⊥y軸于點B,

          ∴S△APB= |k|=2,

          ∴k=±4.

          又∵反比例函數(shù)在第二象限有圖象,

          ∴k=﹣4.

          故選A.

          8.如圖,在四邊形ABCD中,E,F(xiàn)分別在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,則FB等于(  )

          A. B. C.5 D.6

          【考點】平行線分線段成比例.

          【分析】根據(jù)平行線分線段成比例定理列出比例式,代入數(shù)值即可求解.

          【解答】解:∵AB∥EF∥DC,

          ∴ = ,

          ∵DE=3,DA=5,CF=4,

          ∴ = ,

          ∴CB= ,

          ∴FB=CB﹣CF= ﹣4= .

          故選B.

          二、填空題(本大題共6小題,每小題3分,共18分)

          9.化簡: ﹣ =   .

          【考點】二次根式的加減法.

          【分析】先把各根式化為最簡二次根式,再根據(jù)二次根式的減法進行計算即可.

          【解答】解:原式=2 ﹣

          = .

          故答案為: .

          10.計算:(﹣2xy2)3= ﹣8x3y6 .

          【考點】冪的乘方與積的乘方.

          【分析】根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘;冪的乘方,底數(shù)不變指數(shù)相乘計算.

          【解答】解:(﹣2xy2)3,

          =(﹣2)3x3(y2)3,

          =﹣8x3y6.

          故填﹣8x3y6.

          11.一個菱形的周長為52cm,一條對角線長為10cm,則其面積為 120 cm2.

          【考點】菱形的性質.

          【分析】先由菱形ABCD的周長求出邊長,再根據(jù)菱形的性質求出OA,然后由勾股定理求出OB,即可得出BD,再根據(jù)菱形的面積等于對角線乘積的一半計算即可.

          【解答】解:如圖所示:

          ∵四邊形ABCD是菱形,

          ∴AB=BC=CD=DA,AC⊥BD,OA= AC=5,OB= BD,

          ∵菱形ABCD的周長為52cm,

          ∴AB=13cm,

          在Rt△AOB中,根據(jù)勾股定理得:OB= = =12cm,

          ∴BD=2OB=24cm,

          ∴菱形ABCD的面積= ×10×24=120cm2,

          故答案為120.

          12.如圖,ABCD是⊙O的內接四邊形,點E在AB的延長線上,BF是∠CBE的平分線,∠ADC=110°,則∠FBE= 55° .

          【考點】圓內接四邊形的性質.

          【分析】根據(jù)圓內接四邊形的性質求出∠CBE=∠ADC=110°,根據(jù)角平分線定義求出即可.

          【解答】解:∵ABCD是⊙O的內接四邊形,∠ADC=110°,

          ∴∠CBE=∠ADC=110°,

          ∵BF是∠CBE的平分線,

          ∴∠FBE= ∠CBE=55°,

          故答案為:55°.

          13.如圖,在△ABC中,∠ACB=90°,AC=1,AB=2,以A為圓心,以AC為半徑畫弧,交AB于D,則扇形CAD的周長是  +2 (結果保留π)

          【考點】弧長的計算;勾股定理.

          【分析】首先根據(jù)銳角三角函數(shù)確定∠A的度數(shù),然后利用弧長公式求得弧長,加上兩個半徑即可求得周長.

          【解答】解:∵∠ACB=90°,AC=1,AB=2,

          ∴∠A=60°,

          ∴ 的長為 = ,

          ∴扇形CAD的周長是 +2,

          故答案為: +2.

          14.如圖,二次函數(shù)y=a(x﹣2)2+k的圖象與x軸交于A,B兩點,且點A的橫坐標為﹣1,則點B的橫坐標為 5 .

          【考點】拋物線與x軸的交點.

          【分析】根據(jù)二次函數(shù)的解析式即可求出對稱軸為x=2,利用對稱性即可求出B的橫坐標.

          【解答】解:由題意可知:二次函數(shù)的對稱軸為x=2,

          ∴點A與B關于x=2對稱,

          設B的橫坐標為x

          ∴ =2

          ∴B的橫坐標坐標為5

          故答案為:5.

          三、解答題(本大題共10小題,共78分)

          15.先化簡,再求值: ÷ ,其中x=﹣ .

          【考點】分式的化簡求值.

          【分析】先根據(jù)分式的除法法則把原式進行化簡,再把x=﹣ 代入進行計算即可.

          【解答】解:原式= •

          =x2+4,

          當x=﹣ 時,原式=3+4=7.

          16.一個不透明的口袋中有三個小球,上面分別標有數(shù)字﹣2,1,3,每個小球除數(shù)字外其它都相同,小明先從袋中隨機取出1個小球,記下數(shù)字;小強再從口袋剩余的兩個小球中隨機取出1個小球記下數(shù)字,用畫樹狀圖(或列表)的方法,求小明,小強兩人所記的數(shù)字之和為奇數(shù)的概率.

          【考點】列表法與樹狀圖法.

          【分析】列表得出所有等可能的情況數(shù),找出這兩個球上的兩個數(shù)字之和為奇數(shù)的情況數(shù),即可求出所求的概率.

          【解答】解:列表得:

          3 1 ﹣2

          3 ﹣﹣﹣ (1,3) (﹣2,3)

          1 (3,1) ﹣﹣﹣ (﹣2,1)

          ﹣2 (3,﹣2) (1,﹣2) ﹣﹣﹣

          所有等可能的情況有6種,其中兩個數(shù)字之和為奇數(shù)的情況有4種,

          所以小明,小強兩人所記的數(shù)字之和為奇數(shù)的概率= = .

          17.一輛客車和一輛卡車同時從A地出發(fā)沿同一公路同方向行駛,客車的行駛速度是70km/h,卡車的行駛速度是60km/h,客車比卡車早1h經(jīng)過B地,A、B兩地間的路程是多少?

          【考點】一元一次方程的應用;代數(shù)式求值.

          【分析】設A、B兩地間的路程為xkm,根據(jù)題意分別求出客車所用時間和卡車所用時間,根據(jù)兩車時間差為1小時即可列出方程,求出x的值.

          【解答】解:設A、B兩地間的路程為xkm,

          根據(jù)題意得 ﹣ =1,

          解得x=420.

          答:A、B兩地間的路程為420km.

          18.每年的3月22日為“世界水日”,為宣傳節(jié)約用水,小強隨機調查了某小區(qū)部分家庭3月份的用水情況,并將收集的數(shù)據(jù)整理成如下統(tǒng)計圖.

          (1)小強共調查了 20 戶家庭.

          (2)所調查家庭3月份用水量的眾數(shù)為 4 噸;平均數(shù)為 4.2 噸;

          (3)若該小區(qū)有500戶居民,請你估計這個小區(qū)3月份的用水量.

          【考點】眾數(shù);用樣本估計總體;加權平均數(shù).

          【分析】(1)根據(jù)條形統(tǒng)計圖求出調查的家庭總戶數(shù)即可;

          (2)根據(jù)條形統(tǒng)計圖求出6月份用水量的平均數(shù),找出眾數(shù)即可;

          (3)根據(jù)統(tǒng)計圖求出平均每戶的用水量,乘以500即可得到結果.

          【解答】解:(1)根據(jù)題意得:1+1+3+6+4+2+2+1=20(戶),

          則小強一共調查了20戶家庭;

          故答案為:20;

          (2)根據(jù)統(tǒng)計圖得:3月份用水量的眾數(shù)為4噸;

          平均數(shù)為 =4.(噸),

          則所調查家庭3月份用水量的眾數(shù)為4噸、平均數(shù)為4.2噸;

          故答案為:4,4.2;

          (3)根據(jù)題意得:500×4.2=2100(噸),

          則這個小區(qū)3月份的用水量為2100噸.

          19.如圖,在四邊形ABDC中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點,并且E,F(xiàn),G,H四點不共線.

          (1)求證:四邊形EFGH為平行四邊形.

          (2)當AC=BD時,求證:四邊形EFGH為菱形.

          【考點】中點四邊形;三角形中位線定理.

          【分析】(1)根據(jù)三角形中位線定理得到FG∥EH,F(xiàn)G=EH,根據(jù)平行四邊形的判定定理證明;

          (2)根據(jù)菱形是判定定理證明.

          【解答】(1)證明:∵F,G分別為BC,CD的中點,

          ∴FG= BD,F(xiàn)G∥BD,

          ∵E,H分別為AB,DA的中點,

          ∴EH= BD,EH∥BD,

          ∴FG∥EH,F(xiàn)G=EH,

          ∴四邊形EFGH為平行四邊形.

          (2)證明:由(1)得,F(xiàn)G= BD,GH= BC,

          ∵AC=BD,

          ∴GF=GH,

          ∴平行四邊形EFGH為菱形.

          20.如圖,某山坡坡長AB為110米,坡角(∠A)為34°,求坡高BC及坡寬AC.(結果精確到0.1米)

          【參考數(shù)據(jù):sin34°=0.559,cos34°=0.829,tan34°=0.675】

          【考點】解直角三角形的應用﹣坡度坡角問題.

          【分析】根據(jù)正弦、余弦的定義列出算式,計算即可.

          【解答】解:在Rt△ABC中,sinA= ,cosA= ,

          則BC=AB•sinA=110×0.559≈61.5(米),

          AC=AB•cosA=110×0.829≈91.2(米),

          答:坡高BC約為61.5米,坡寬AC約為91.2米.

          21.如圖,在正方形ABCD中,E為直線AB上的動點(不與A,B重合),作射線DE并繞點D逆時針旋轉45°,交直線BC邊于點F,連結EF.

          探究:當點E在邊AB上,求證:EF=AE+CF.

          應用:(1)當點E在邊AB上,且AD=2時,則△BEF的周長是 4 .

          (2)當點E不在邊AB上時,EF,AE,CF三者的數(shù)量關系是 EF=CF﹣AE或EF=AE﹣CF .

          【考點】四邊形綜合題.

          【分析】探究:作輔助線,構建全等三角形,證明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再證明△GDE≌△FDE(SAS),根據(jù)EG的長可得結論;

          應用:

          (1)利用探究的結論計算三角形周長為4;

          (2)分兩種情況:①點E在BA的延長線上時,如圖2,EF=CF﹣AE,②當點E在AB的延長線上時,如圖3,

          EF=AE﹣CF,兩種情況都是作輔助線,構建全等三角形,證明兩三角形全等得線段相等,根據(jù)線段的和與差得出結論.

          【解答】探究:證明:如圖,延長BA到G,使AG=CF,連接DG,

          ∵四邊形ABCD是正方形,

          ∴DA=DC,∠DAG=∠DCF=90°,

          ∴△DAG≌△DCF(SAS),

          ∴∠1=∠3,DG=DF,

          ∵∠ADC=90°,∠EDF=45°,

          ∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,

          ∵DE=DE,

          ∴△GDE≌△FDE(SAS),

          ∴EF=EG=AE+AG=AE+CF;

          應用:

          解:(1)△BEF的周長=BE+BF+EF,

          由探究得:EF=AE+CF,

          ∴△BEF的周長=BE+BF+AE+CF=AB+BC=2+2=4,

          故答案為:4;

          (2)當點E不在邊AB上時,分兩種情況:

          ①點E在BA的延長線上時,如圖2,

          EF=CF﹣AE,理由是:

          在CB上取CG=AE,連接DG,

          ∵∠DAE=∠DCG=90°,AD=DC,

          ∴△DAE≌△DCG(SAS)

          ∴DE=DG,∠EDA=∠GDC

          ∵∠ADC=90°,

          ∴∠EDG=90°

          ∴∠EDF+∠FDG=90°,

          ∵∠EDF=45°,

          ∴∠FDG=90°﹣45°=45°,

          ∴∠EDF=∠FDG=45°,

          在△EDF和△GDF中,

          ∵ ,

          ∴△EDF≌△GDF(SAS),

          ∴EF=FG,

          ∴EF=CF﹣CG=CF﹣AE;

          ②當點E在AB的延長線上時,如圖3,

          EF=AE﹣CF,理由是:

          把△DAE繞點D逆時針旋轉90°至△DCG,可使AD與DC重合,連接DG,

          由旋轉得:DE=DG,∠EDG=90°,AE=CG,

          ∵∠EDF=45°,

          ∴∠GDF=90°﹣45°=45°,

          ∴∠EDF=∠GDF,

          ∵DF=DF,

          ∴△EDF≌△GDF,

          ∴EF=GF,

          ∴EF=CG﹣CF=AE﹣CF;

          綜上所述,當點E不在邊AB上時,EF,AE,CF三者的數(shù)量關系是:EF=CF﹣AE或EF=AE﹣CF;

          故答案為:EF=CF﹣AE或EF=AE﹣CF.

          22.甲、乙兩輛汽車沿同一路線從A地前往B地,甲以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙在甲出發(fā)2小時后勻速前往B地,設甲、乙兩車與A地的路程為s(千米),甲車離開A地的時間為t(時),s與t之間的函數(shù)圖象如圖所示.

          (1)求a和b的值.

          (2)求兩車在途中相遇時t的值.

          (3)當兩車相距60千米時,t=  或  時.

          【考點】一次函數(shù)的應用.

          【分析】(1)根據(jù)速度=路程÷時間即可求出a值,再根據(jù)時間=路程÷速度算出b到5.5之間的時間段,由此即可求出b值;

          (2)觀察圖形找出兩點的坐標,利用待定系數(shù)法即可求出s乙關于t的函數(shù)關系式,令s乙=150即可求出兩車相遇的時間;

          (3)分0≤t≤3、3≤t≤4和4≤t≤5.5三段求出s甲關于t的函數(shù)關系式,二者做差令其絕對值等于60即可得出關于t的函數(shù)絕對值符號的一元一次方程,解之即可求出t值,再求出0≤t≤2時,s甲=50t=60中t的值.綜上即可得出結論.

          【解答】解:(1)a= =50,

          b=5.5﹣ =4.

          (2)設乙車與A地的路程s與甲車離開A地的時間t之間的函數(shù)關系式為s乙=kt+m,

          將(2,0)、(5,300)代入s=kt+m,

          ,解得: ,

          ∴s乙=100t﹣200(2≤t≤5).

          當s乙=100t﹣200=150時,t=3.5.

          答:兩車在途中相遇時t的值為3.5.

          (3)當0≤t≤3時,s甲=50t;

          當3≤t≤4時,s甲=150;

          當4≤t≤5.5時,s甲=150+2×50(t﹣4)=100t﹣250.

          ∴s甲= .

          令|s甲﹣s乙|=60,即|50t﹣100t+200|=60,|150﹣100t+200|=60或|100t﹣250﹣100t+200|=60,

          解得:t1= ,t2= (舍去),t3= (舍去),t4= (舍去);

          當0≤t≤2時,令s甲=50t=60,解得:t= .

          綜上所述:當兩車相距60千米時,t= 或 .

          故答案為: 或 .

          23.如圖,四邊形ABCO為矩形,點A在x軸上,點C在y軸上,且點B的坐標為(﹣1,2),將此矩形繞點O順時針旋轉90°得矩形DEFO,拋物線y=﹣x2+bx+c過B,E兩點.

          (1)求此拋物線的函數(shù)關系式.

          (2)將矩形ABCO向左平移,并且使此矩形的中心在此拋物線上,求平移距離.

          (3)將矩形DEFO向上平移距離d,并且使此拋物線的頂點在此矩形的邊上,則d的值是  或  .

          【考點】二次函數(shù)圖象與幾何變換.

          【分析】(1)待定系數(shù)法即可解決問題.

          (2)矩形ABCO的中心坐標為(﹣ ,1),可得1=﹣x2+ x+ ,解得x=﹣ 或2,所以平移距離d=﹣ ﹣(﹣ )= .

          (3)求出頂點坐標,點E坐標,即可解決問題.

          【解答】解:(1)由題意,點E的坐標為(2,1),

          則 ,解得 ,

          ∴此拋物線的解析式為y=﹣x2+ x+ .

          (2)∵矩形ABCO的中心坐標為(﹣ ,1),

          ∴1=﹣x2+ x+ ,

          解得x=﹣ 或2,

          ∴平移距離d=﹣ ﹣(﹣ )= .

          (3)∵y=﹣x2+ x+ =﹣(x﹣ )2+ ,

          ∴拋物線的頂點坐標為( , ),

          ∵E(2,1),

          ∴平移距離d= 或 ﹣1= ,

          故答案為 或 .

          24.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=6cm,BC=9cm,點P從點A出發(fā),以2cm/s的速度沿A→D→C方向向點C運動;同時點Q從點C出發(fā),以1cm/s的速度沿C→B方向向點B運動,設點Q運動時間為ts,△APQ的面積為Scm2.

          (1)DC= 5 cm,sin∠BCD=   .

          (2)當四邊形PDCQ為平行四邊形時,求t的值.

          (3)求S與t的函數(shù)關系式.

          (4)若S與t的函數(shù)圖象與直線S=k(k為常數(shù))有三個不同的交點,則k的取值范圍是

          【考點】四邊形綜合題.

          【分析】(1)如圖1,作高線DE,證明四邊形ABED是矩形,再利用勾股定理求DC的長,在Rt△DEC中,求出

          sin∠BCD= = ;

          (2)當四邊形PDCQ為平行四邊形時,點P在AD上,如圖2,根據(jù)PD=CQ列方程得:6﹣2t=t,解出即可;

          (3)分三種情況:

          ①當0

          ②當3

          ③當

          (4)畫出圖象,根據(jù)圖象得出結論.

          【解答】解:(1)過D作DE⊥BC于E,則∠BED=90°,

          ∵AD∥BC,

          ∴∠B+∠BAD=180°,

          ∵∠B=90°,

          ∴∠B=∠BAD=90°,

          ∴四邊形ABED是矩形,

          ∴AD=BE=6,DE=AB=4,

          ∴EC=BC﹣BE=9﹣6=3,

          在Rt△DEC中,由勾股定理得:DC=5,

          sin∠BCD= = ,

          故答案為:5, ;

          (2)由題意得:AP=2t,CQ=t,

          則PD=6﹣2t,

          當四邊形PDCQ為平行四邊形時,如圖2,

          則PD=CQ,

          ∴6﹣2t=t,

          ∴t=2;

          (3)分三種情況:

          ①當0

          S= AP•AB= ×4×2t=4t;

          ②當3

          過P作MN⊥BC,交BC于N,交AD的延長線于M,

          由題意得:CQ=t,BQ=9﹣t,PA=2t,PD=2t﹣6,

          ∴PC=5﹣PD=5﹣(2t﹣6)=11﹣2t,

          由圖1得:sin∠C= ,

          ,

          PN= ,

          ∴PM=4﹣PN=4﹣ = ,

          S=S梯形ABCD﹣S△PQC﹣S△ABQ﹣S△APD,

          = ﹣ ﹣ × ﹣ = ;

          ③當

          S= =2t;

          綜上所述,S與t的函數(shù)關系式為:S= .

          (4)如圖6,S= ;

          S的最小值為: = ,

          當t=3時,S=4×3=12,

          ∴則k的取值范圍是:

          故答案為:

        猜你喜歡:

        1.2017年中考數(shù)學試卷含答案

        2.2017中考數(shù)學考前模擬題及答案

        3.2017安徽中考數(shù)學練習試卷及答案

        4.2017初中數(shù)學中考模擬試卷

        5.2017中考數(shù)學試題及答案

        6.2017中考數(shù)學全真模擬試題及答案

        2017瀘州中考數(shù)學練習試卷(2)

        2017瀘州中考數(shù)學練習試題答案 一、選擇題(本大題共8小題,每小題3分,共24分) 1.比﹣1大2的數(shù)是( ) A.﹣3 B.﹣2 C.1 D.2 【考點】有理數(shù)的加法. 【分析】根據(jù)
        推薦度:
        點擊下載文檔文檔為doc格式

        精選文章

        • 2017瀘州中考數(shù)學模擬試題答案
          2017瀘州中考數(shù)學模擬試題答案

          學生想在中考取得提升備考的時候就要多做中考數(shù)學模擬真題,并加以復習,這樣能更快提升自己的成績。以下是學習啦小編為你整理的2017瀘州中考數(shù)學模

        • 2017龍巖中考數(shù)學模擬試卷及答案
          2017龍巖中考數(shù)學模擬試卷及答案

          很多考生對中考數(shù)學不知道該如何復習,掌握中考數(shù)學模擬試題多加練習會讓考生得到一定幫助,以下是小編精心整理的2017龍巖中考數(shù)學模擬試題及答案,

        • 2017龍江中考數(shù)學練習試題及答案
          2017龍江中考數(shù)學練習試題及答案

          初三的學生都想要提高自己的中考數(shù)學成績,了解中考數(shù)學練習真題多加練習會讓考生得到一定幫助,以下是小編精心整理的2017龍江中考數(shù)學練習真題及答

        • 2017龍東地區(qū)中考數(shù)學模擬試題
          2017龍東地區(qū)中考數(shù)學模擬試題

          備戰(zhàn)中考的考生可以對中考數(shù)學模擬考題多加練習,這樣可以提高自己的中考數(shù)學成績,以下是小編精心整理的2017龍東地區(qū)中考數(shù)學模擬考題,希望能幫到

        32838 主站蜘蛛池模板: 性色av一区二区三区夜夜嗨| 四虎成人在线观看免费| 97超碰精品成人国产| 亚洲熟妇自偷自拍另亚洲| 人妻在线中文字幕| 精品国产美女av久久久久| 精品国产肉丝袜在线拍国语| 91网址在线播放| 亚洲欧美自偷自拍视频图片| 日本熟妇人妻中出| 色偷偷亚洲精品一区二区| 亚洲婷婷五月综合狠狠爱| 色吊丝免费av一区二区| 无码精品人妻一区二区三区中 | 成人福利一区二区视频在线| 无码中文av波多野结衣一区 | 蜜臀av久久国产午夜| 色妞永久免费视频| 自拍偷拍另类三级三色四色| 免费国产好深啊好涨好硬视频| 免费特黄夫妻生活片| 永久免费AV无码国产网站| 亚洲精品精华液| 视频二区中文字幕在线| 三级黄片一区二区三区| 少妇xxxxx性开放| 国产亚洲精品久久av| 成人午夜福利精品一区二区| 98精品全国免费观看视频| 国产成人精品国内自产色| 午夜爽爽爽男女免费观看影院| 天堂一区二区三区av| 少妇愉情理伦片高潮日本| 久久91这里精品国产2020| 乱码精品一区二区三区| 午夜性又黄又爽免费看尤物 | 欧美性大战久久久久XXX| 国产av国片精品一区二区| 欧美性大战xxxxx久久久√| 精品国产中文字幕第一页| 无码人妻少妇久久中文字幕蜜桃|